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with 1/6 = (37/4)¥3~1/y and p given by (5) and (9).
A lower bound is obtained by minimizing § ; over
all p such that [o=N. For simplicity we shall on-
ly use the absolute minimufln of §5. By (12)

W|H,|9)=-3.68(Ny+8 Z,73)2. (15)
i=1
Optimizing (15) with respect to v yields
M 7 T3\1272
W |9) >~ 2.08 N[1+<E —;,——) } . 8)
i=1

Remarks.—~—(1) If the fermions are of ¢ species
(instead of 2 as in the electron case), then the
right-hand side of (10) would acquire a factor (2/
q)?’® and the right-hand side of (16) a factor (g/
2)2/3'

(2) I all Z,=Z, our result (16) gives a Z"/2 de-
pendence instead of the known Z2 bound.®? If MZ
<N then MZ"3/N < Z¥3, which is an improvement
over Ref. 3. If MZ >N then we have to use the [p
=N condition in (14). The TF no-binding theorem
also holds in the subneutral case. By convexity
of the TF energy in [ p, the minimum occurs for

M atoms with equal electron charge N/M. If MZ
>N the energy per atom is proportional to (N/
M)Y3z2, Then (|H, |9) is bounded below by —aN
—-bZ2M?3N'3, While this has the correct Z de-
pendence, it has the wrong M dependence®; M¥3

_should be replaced by N¥3, This difficulty is in-
herent in TF theory. What one needs is a simple
proof that if MZ >N, then one can remove most
of the surplus nuclei without affecting the energy.
Even for N=1 this is not a simple problem. Nev-
ertheless, our present bound is proportional to
the fotal particle number, and this is sufficient
for proving the existence of the thermodynamic

limit.*
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The noise produced by thermodynamic fluctuations (e.g., in carrier number) is shown
to diverge for ideal contact (spreading) resistors. For diffusion-controlled fluctuations
the frequency spectrum is shown to be proportional to w ! (i.e., 1/f) for high frequen-
cies. This behavior is shown to be approached by resistors whose surfaces have sharp
corners. The relation to observed noise is briefly discussed.

Noise power proportional to the square of the
applied voltage (V) with a frequency spectrum
S(w) xw ™! over a wide range of w has been ob-
served in a variety of electrical devices."? Sev-

eral models for this noise, invoking either com-

plicated processes (e.g., hydromagnetic turbu-

lence®) or purely mathematical constructs (e.g.,
correlated pulses?), have not given successful
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quantitative predictions. Attempts to derive this
noise from simple thermodynamic fluctuations in
such variables as local carrier concentration or
local temperature (with the time course deter-
mined by diffusion) have also not been very suc-
cessful.>® The w™ law and the corresponding in-
finite mean square noise have been predicted only
for a resistive layer with a special distribution
of thicknesses.” In this communication I show
that diffusion noise from the singular region of
the field in a contact resistor should give S(w)
xw™lag w-—-w,

The treatment is similar to that of Richardson’
except that I explicitly evaluate the spatial weight-
ing function for fluctuations in terms of the elec-
tric field E. I then derive the results directly
from the known geometry of spreading resistanc-
es, not from assumptions about a possible sur-
face layer. For fluctuations in conductivity o
caused by spontaneous fluctuations in carrier or
impurity concentration, local temperature, etc.,
{(A0/0)®» =v/d% in a small volume d%7, where v
is a scaling volume which depends on the source
of the fluctuations® (i.e., the magnitude of the
fluctuations is inversely proportional to the size
of the region observed). To first order in the
fluctuations (for a linear theory”) we may assume
constant V and E and consider the effect of fluctu-
ations in o on the resistance R. Using the expres-
sion E2¢ for the power dissipation density, we ob-
tain (for uniform o and v)

(&)= ()
=URV2;’2 [EA®) aor, (1)

where the integral is evaluated over the conduct-
ing region. This result may be extended” to ob-
tain the autocorrelation function:

AR(¢+T)AR($)
Glr) =< ( R ( >
vR?
V4
where c(r, 1/, 7) is the space-time correlation
function for the fluctuating variable. For uniform

diffusion in three dimensions with diffusion coef-
ficient D

- - g -., 2
c(r, ', 1) = (4nDT) "¥/2¢ ~(r-1") /aDT (2)

JIEXDEXT e (F, 72, 7) @' dr,

(see Ref. 7). One may rewrite [E%r")c(T, 1/, T)
Xd®r'" ag E*(r, T), which is roughly the average of
E? in a sphere of radius (D7)Y/2 around r.
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A simple contact resistor consists of an infi-
nitely thin insulating sheet with a hole of radius
a separating two conducting regions, with R=1/
2ab. The potential and field for this case have
been solved analytically.® Near the edge of the
hole the field diverges:

E¥x) - (V?/2an?) x "1, (3)

where x is the distance to the hole’s edge for any
point within a solid torus around the edge. Then
the torus of radius x, «<a contributes to [E*d®» a
term

(V4/4a21r4)21mfox°x "22mx dx — o, (4)

where 2ma 2nx dx is the volume of a toroidal shell
of minor radius x. Intuitively, one may say that
the divergence results from the inverse propor-
tionality of the fractional noise to the size of the
system, which emphasizes singularities.

For short correlation times (high frequencies)
the noise is dominated by contributions from the
singular region. Qualitatively, diffusion has the
effect of truncating E*(x, 7) at a maximum about
equal to E*(D7)*?), This produces a leading term
for small 7 given by

G(1) - (v/871%a)In(x,2/D1). (5)

Taking the Fourier transform [first terminating
this term in G(7) at 7=x,2/D] one gets

S(w) - v(87%a%) "1 "L, (6)

Although I have assumed a circular hole, any
hole with finite curvature has the same order
field divergence at the edge, so that the results
are quite general except for the coefficient (872
xa®)"!, The w ™ law holds only for w>D/a®. For
w <D/a? the singularity is unimportant, so that
in this range an ordinary diffusion spectrum? with
finite S(0) is predicted.

Physical contact resistors usually have narrow
wedges rather than planes of insulator (see Fig.
1). Near a wedge with appropriate boundary con-
ditions, conformal mapping gives

E?(x) ccx2(0" 7r)/(27r-9),

with 6 as illustrated. Then [EXT)d®r converges,
so that for small 7 we may write

G(1) = G(0)(1 - y17). (M

Again, the effect of diffusion within the resistor
is to truncate E*(x, 7) at about E2((D1)Y?), pro-
ducing a term with y =6/(27 - 0).° Terminating
this term conveniently at 7=y "!/Y we obtain the
Fourier transform which has a limiting behavior



VOLUME 35, NUMBER 11

PHYSICAL REVIEW LETTERS

15 SEPTEMBER 1975

FIG. 1. The field and equipotential lines in half a
cross section of a spreading resistor. The resistance
between consecutive equipotentials is dR’=R/20. The
current density is inversely proportional to the spacing
between field lines. A wedge angle is shown without
its field lines.

as w—o of S(w) xw™® where a=1+y=1+6/(27

—#6). For 6<7n/10, a=1.05. For another case of
interest, that of a spreading resistance at the end
of a channel, 6=7/2, giving a=4%.

Several physical effects other than finite wedge
angles can cause a deviation from S(w) «w™ at
high frequencies. Replacing the ideal insulating
plane by a sheet of finite thickness I with a hole
with rounded edges should lead to a rolloff steep-
er than w™! for w>D/I?, Even for an ideal geom-
etry, such effects as the inherent time constant
(RC =¢/0, where £ is the dielectric constant) of
the conductor, the finite carrier relaxation time,
and higher-order terms in the thermodynamic-
fluctuation-probability expansion prevent the w”
law from holding for infinitely large w. Although
such effects are likely to occur above the obser-
able frequency range, they must be invoked to
justify the self-consistent use of a linear theory,
which requires ((AR/R)? « 1.

I shall briefly consider next the relevance of
this theory to some systems other than contacts
per se, which are known sources of w"?! noise.®”
Carbon resistors are known to exhibit w™! noise
from about w=1.5x10"% gsec™! ! to w~10° sec™ 1!
Since these resistors contain many small con-
tacts, we expect them to give w ™! noise. How-
ever, the persistence of this noise to extremely
low frequencies can be explained by the present
theory only by assuming a very slowly diffusing
variable. The concentration of impurities has
been proposed as such a variable.!? An experi-
ment on germanium??® shows noise with @=1.3 to

1

1.35 extending from w=1.5X10"% sec”! to audio
frequencies. We may speculate that such noise
could result from field singularities near the cor-
ners of lattice defects with 6=7/2 and a=%. In
strained germanium samples with many lattice
defects there is a dramatic increase in noise*
consistent with this explanation. Different power
laws may be produced by different types of de-
fects. ‘

Noise with a roughly w™! spectrum has been ob-
served in ionic spreading resistors.' The noise
scaled as 1/a®, as the present work predicts for
this type of noise. The scaling factor v was >1/-
n, poorly reproducible and concentration indepen-
dent, which may indicate that the noise resulted
from fluctuations in concentrations of impurities,
such as bubbles or dust, rather than in carrier
concentrations. Other ionic systems have shown
noises which deviate sufficiently from an w™?! law
to be accounted for by ordinary diffusion spectra.'®

Temperature fluctuations have been established
as the source of current noise in metal films?’
and one ionic system.® However, in the frequen-
cy ranges over which this noise has been studied,
the contribution from the high-frequency tails of
sharp corners should be small, so that the pres-
ence of this type of noise can not be determined.

This theory may be tested in ionic resistors for
which walls can be made with 6 from nearly 0 to
nearly 7. Suitable fluctuating variables could be
either ion concentration or concentration of poly-
styrene spheres. Polystyrene spheres of radius
r allow for changes in v and D with negligible
changes in current, voltage, and resistance,
since D« 1/7 and v < % X(concentration in volume
%). Such experiments should demonstrate that
the “universal 3-power law’? for diffusion spec-
tra occurs only for the usually considered case
of step-function singularities in £2 within the re-
gion accessible to diffusion. Other singularities
can produce any value of o between 1 and 2.

*Work supported by the National Science Foundation
under Grant No. DMR-74-24361.
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We investigate the quantitative implications for deep inelastic neutrino scattering of a
proposed additional V + A charm-changing current ¢y,(1— y;)d. Quark-parton-model
spectrum-averaged predictions are compared with available vN and vN y distributions as
obtained at Fermilab. Agreement is achieved with an effective charm threshold W;, =4
GeV. A characteristic feature is an enhanced sea contribution that can account for the
anomaly in dg/dy for YN. Predictions for sum rules are significantly changed at high

energy.

A new charm-changing V +A current ¢y “(1 - v5)d has recently been proposed by De Ridjula, Georgi,
and Glashow' to explain the observed AI =3 rule for nonleptonic decays and also to permit equal
strange and nonstrange hadronic decays of charmed particles. The existence of this new current
clearly has important implications for deep inelastic neutrino scattering. We investigate here the
consequences and predictions in the quark-parton model (QPM). Agreement with available Fermi Na-
tional Accelerator Laboratory (FNAL) do/dy data® is achieved with a charm threshold W,, =4 GeV.
Charm production through this mechanism, that involves valence as well as sea quarks, also gives
fast-muon distributions consistent with those from the dimuon events.®*** The presence of the new cur-
rent also has significant implications for the x distributions and for sum rules.

Including the new term, the charged weak hadronic current in terms of quarks is’

J, =iy, (1+y,)(dC +8) + Ty, (1 +75)(sC =dS) + Ty, (1 =y, ), (1)

where C =cosfd; and S =sinf, with 6. the Cabibbo angle. Below threshold for producing charmed par-
ticles the differential cross sections o(x, y) =d%0/dx dy per average nucleon N=3(p +n) are

o ¥(x,y)/x=(u+d)C?+2sS* + (u+d)(1 - y)?,
OBN(X, v)/x=(@+d)C? +258% + (u+d)(1 - v)?,

()

in units of G2ME/m. The quark densities are denoted by u(x), d(x), s(x), and ¢(x) and x=Q%/2Mv and
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