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with 1/6 = (3s/4) ' —1/y and p given by (5) and (9).
A lower bound is obtained by minimizing Ss over
all p such that fp=N. For simplicity we shall on-
ly use the absolute minimum of h&. By (12)

($~H„~()-- 3.68(Ny+6+ Z;"')'. (15)

limit
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Optimizing (15) with respect to y yields
N Z 7/3 1/2- 2

($~&~~))--2.08N 1+ Q N
. (16)

Remarks. —(1) If the fermions are of q species
(instead of 2 as in the electron case), then the
right-hand side of (10) would acquire a factor (2/
q)'t' and the right-hand side of (16) a factor (q/
2)2ls

(2) If all Z&=Z, our result (16) gives a Z"' de-
pendence instead of the known Z bound. If MZ
~ N then MZ"'/N (Z~', which is an improvement
over Ref. 3. If MZ)N then we have to use the Jp
=N condition in (14). The TF no-binding theorem
also holds in the subneutral case. By convexity
of the TF energy in Jp, the minimum occurs for
M atoms with etlual electron charge N/M. If MZ
»N the energy per atom is proportional to (N/
M)'fsZ'. Then (gl&„ IP) is bounded below by -aN
-bZ'M@'N"3. While this has the correct Z de-
pendence, it has the wrong I dependence', M@3

should be replaced by N' . This difficulty is in-
herent in TF theory. What one needs is a simple
proof that if MZ»N, then one can remove most
of the surplus nuclei without affecting the energy.
Even for N=1 this is not a simple problem. Nev-
ertheless, our present bound is proportional to
the total particle number, and this is sufficient
for proving the existence of the thermodynamic
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The noise produced by thermodynamic Quctuations (e.g. , in carrier number) is shown
to diverge for ideal contact (spreading) resistors. For diffusion-controlled. fluctuations
the frequency spectrum is shown to be proportional to &u (i.e. , 1/f) for high frequen-
cies. This behavior is shown to be approached by resistors whose surfaces have sharp
corners. The relation to observed noise is briefly discussed.

Noise power proportional to the square of the
applied voltage (V) with a fretluency spectrum
S(cu) ~ ~"' over a wide range of &u has been ob-
served in a variety of electrical devices. " Sev-

eral models for this noise, invoking either com-
plicated processes (e.g. , hydromagnetic turbu-
lence') or purely mathematical constructs (e.g. ,
correlated pulses4), have not given successful
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quantitative predictions. Attempts to derive this
noise from simple thermodynamic fluctuations in
such variables as local carrier concentration or
local temperature (with the time course deter-
mined by diffusion) have also not been very suc-
cessful. " The w ' law and the corresponding in-
finite mean square noise have been predicted only
for a resistive layer with a special distribution
of thicknesses. ' In this communication I show
that diffusion noise from the singular region of
the field in a contact resistor should give S(~)

as (d

The treatment is similar to that of Richardson'
except that I explicitly evaluate the spatial weight-
ing function for fluctuations in terms of the elec-
tric field E. I then derive the results directly
from the known geometry of spreading resistanc-
es, not from assumptions about a possible sur-
face layer. For fluctuations in conductivity 0

caused by spontaneous fluctuations in carrier or
impurity concentration, local temperature, etc. ,
((~o/o)') = v/d'r in a small volume d'r, where v

is a scaling volume which depends on the source
of the fluctuations' (i.e. , the magnitude of the
fluctuations is inversely proportional to the size
of the region observed). To first order in the
fluctuations (for a linear theory') we may assume
constant V and E and consider the effect of fluctu-
ations in 0 on the resistance A. Using the expres-
sion E'o for the power dissipation density, we ob-
tain (for uniform o and v)

820'
= v , fE-'(-r—) d'r,

where the integral is evaluated over the conduct-
ing region. This result may be extended' to ob-
tain the autocorrelation function:

2

c(r, r', v) = (4)(Dv) -s/28 -(r- r ') /4DT (2)

(see Ref. 7). One may rewrite JE'(r')c(r, r', r)
xd'»' as E'(r, r), which is roughly the average of
E' in a sphere of radius (Dr)'~2 around r.

m(f + ~)~If(t)
8

ng2O'="——4-- ffE'(r)E'(r')c(r, r', v) d'r'd'r,

where c(r, r', r) is the space-time correlation
function for the fluctuating variable. For uniform
diffusion in three dimensions with diffusion coef-
ficient D

(V'/4a')(4) 2@af x '27(x dx— (4)

where 2va2nxdx is the volume of a toroidal shell
of minor radius x. Intuitively, one may say that
the divergence results from the inverse propor-
tionality of the fractional noise to the size of the
system, which emphasizes singularities.

For short correlation times (high frequencies)
the noise is dominated by contributions from the
singular region. Qualitatively, diffusion has the
effect of truncating E'(x, 7) at a maximum about
equal to E'((D7)'/'). This produces a leading term
for small v given by

G(T) - (v/87('a) ln( x,'/DT).

Taking the Fourier transform [first terminating
this term in G(v) at 7 =x,'/D] one gets

)

S((8) - v(8)7'a') '(u '. (8)

Although I have assumed a circular hole, any
hole with finite curvature has the same order
field divergence at the edge, so that the results
are quite general except for the coefficient (8))'2

&a') '. The (8 ' law holds only for (8»D/a'. For
(8 (D/a2 the singularity is unimportant, so that
in this range an ordinary diffusion spectrum' with
finite S(0) is predicted.

Physical contact resistors usually have narrow
wedges rather than planes of insulator (see Fig.
1). Near a wedge with appropriate boundary con-
ditions, conformal mapping gives

E2( ) ~ P(8 7f)/(27K 8)

with 0 a.s illustrated. Then JE'(r) d'r converges,
so that for small 7 we may write

G(7) = G(0)(1 —y7 )') (7)

Again, the effect of diffusion within the resistor
is to truncate E (x, r) at about 'E((Dr)' '), pro-
ducing a term with ) =0/(2& —0).' Terminating
this term conveniently at 7 = g '~~ we obtain the
Fourier transform which has a limiting behavior

A simple contact resistor consists of an infi-
nitely thin insulating sheet with a hole of radius
a separating two conducting regions, with 8 = 1/
2a5. The potential and field for this case have
been solved analytically. ' Near the edge of the
hole the field diverges:

E'(x) -(V'/2a))') x ',

where x is the distance to the hole's edge for any
point within a solid torus around the edge. Then
the torus of radius xo «a contributes to fE4d'r a
term
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We investigate the quantitative implications for deep inelastic neutrino scattering of a
proposed additional V+A charm-changing current Fyz(1 —y5)d. Quark-parton-model
spectrum-averaged predictions are compared with available vH and vN y distributions as
obtained at Fermilab. Agreement is achieved with an effective charm threshold g, &

=4
GeV. A characteristic feature is an enhanced sea contribution that can account for the
anomaly in do/dy for vN. Predictions for sum rules are significantly changed at high
energy.

A new charm-changing V+A current cy„(1-y, )d has recently been proposed by De Rujula, Georgi,
and Glashow' to explain the observed LhI =-,' rule for nonleptonic decays and also to permit equal
strange and nonstrange hadronic decays of charmed particles. The existence of this new'current
clearly has important implications for deep inelastic neutrino scattering. We investigate here the
consequences and predictions in the quark-parton model (QPM). Agreement with available Fermi Na-
tional Accelerator Laboratory (FNAL) dc/dy data' is achieved with a charm threshold W, „=4 GeV.
Charm production through this mechanism, that involves valence as well as sea quarks, also gives
fast-muon distributions consistent with those from the dimuon events. '' The presence of the new cur-
rent also has significant implications for the x distributions and for sum rules.

Inc]uding the new term, the charged weak hadronic current in terms of quarks is'

J& ——uy& (1 + y, )(dC + sS) + cy &
(1 + y, )(sC —dS) + cy

&
(1 —y, )d,

where C =cos6I~ and 8 = singe, with Oc the Cabibbo angle. Below threshold for producing charmed par-
ticles the differential cross sections c(x, y) =d'cr/dxdy per average nucleon N= , (p+n) are—

o'"(x, y)/x = (u+ d)C'+ 2sS'+ (u+ d)(1 —y)',
o""(x,y)/x = (u+ d)C'+ 2sS'+ (~+ d)(1 —y)',

in units of G'ME/z. The quark densities are denoted by u(x), d(x), s(x), and c(x) and x = Q'/2Mv and


