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Conditions are given for the renormalization-group transformations of the Hamiltonian
of a thermodynamic system which lead to a discontinuity in an order parameter.

In renormalization-group applications to statis-
tical mechanics, the singularities of thermody-
namic functions associated with phase transitions
are located on critical surfaces determined by
the fixed points of the renormalization transfor-
mation. ' While the properties of the fixed points
which give rise to second-order phase transitions
and critical phenomena, e.g. , infinite correlation
length, are well understood, the corresponding
properties associated with first-order phase tran-
sitions, e.g. , discontinuous change in an order
parameter, have remained largely unexplored.
In a recent review article, ' Aharony refers to re-
normalization transformations leading to these
discontinuities as mappings into a "no man's land"
of first-order phase transitions, while in other
reviews' the problem is ignored altogether. The
purpose of this note is to give sufficient condi-
tions on the fixed points and eigenvalues of re-
normalization transformations for the Hamilton-
ian of a thermodynamic system which give rise
to a discontinuous order parameter for tempera-
tures 7.' below a critical temperature 7.', . Some
of these conditions can be shown to be generally
valid for renormalization- group transformations
of Ising-spin models which preserve the sym-
metry of the ground-state spin configuration.
However certain assumptions that we make about
the general properties of the renormalization
mappings have been verified only in approximate
numerical calculations for several first-order

phase transitions which occur for a square-lat-
tice Ising model.

Let the Hamiltonian of the thermodynamic sys-
tem under consideration depend on a set of fields
K~, e =1, 2, . . ., and on the field H which is con-
jugate to an order parameter M. A first-order
phase transition for temperatures 7 below a crit-
ical temperature T, can be described by a dis-
continuity of I as a function of H which can be
taken to occur at II=0. Assume there exists a
renormalization- group transformation of this
Hamiltonian to new fields K„'(K,H) and H'(K, H)
which are analytic functions of K and H. Since
the origin and the sign of H for small values of
H must be preserved by this transformation, it
follows that H'(K, 0) = 0 while &H'(K, 0)/aH 4 0.
As is well known, ' in renormalization-group the-
ory the critical behavior of such a system is de-
termined by a fixed point at K„=K~* and II =0,
with a relevant eigenvalue &a*—-aH'(K*, 0)/9H as
sociated with the ordering field H, and with one
or more relevant eigenvalues obtained by diago-
nalizing the matrix T„s=9K„'(K*,0)/9K&. These
eigenvalues determine the universal critical ex-
ponents of the thermodynamic functions with pow-
er-law singularities located on the critical sur-
face associated with this fixed point, i.e. , the
subspace of points K„, II =0, which are mapped
by successive renormalization transformations
arbitrarily close to this fixed point.

We now state further conditions on these re-
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normalization transformations and on the order
parameter M which are sufficient for the occur-
rence of a discontinuity b. M in M for tempera-
tures T below the critical temperature T,:

(a) There exists another fixed point at K~ =K„**
and II = 0 such that points K~ and II = 0 which be-
long to a domain S (corresponding to T & T,)
bounded on one side by the critical surface are
mapped by successive renormalization transfo r-
mations into this fixed point. We shall refer to
it as the discontinuity fixed point.

(b) At this fixed point, the eigenvalue X„**
=BH'(K**, 0)/BH associated with the ordering
field II is given by XH** = L, where L is the
change in the scale of volume under the renor-
malization transf ormations. For discrete lat-
tices I is the number of spins in a Kadanoff cell.

(e) The limit ™*of the discontinuity &M(K)
of the order parameter as K approaches K**does
not vanish.

We first prove that condition (b) is necessary
for a discontinuity &M(K) at H= 0 for K„+X), by
applying the inhomogeneous scaling equation for
the free energy f(K, H) of the system. ' We have

f(K, H) =g, (K, H) +L 'fPC', H'-),

where gl, (K, H) is the self-energy per spin of the
Kadano ff ce ll and is assumed to be analytic at
H= 0. Hence &M(K) =-M, (K) -M (K), where

M~(K) = lim Sf(K, H)/SH,
a~ p&

satisfies the equation'

~M(K) =H(K) ~M(K''),

where A(K) = L 'S H'(K, H)/BH at H= 0.
By considering Eq. (2) at the discontinuity fixed

point we obtain A(K**)= 1 provided that b, M(K**)
40. This proves that condition (b) is necessary. '
Note that condition (b) also implies that sg~(K**,
0)/BH= 0 in order that M, not be logarithmically
divergent at the discontinuity fixed point. To
show that these conditions are also sufficient to
obtain ™(K)WO for K„H & we apply the renor-
malization trans formations successively to Eq.
(2) and obtain

~M(K) = Q H(K&"') ~M**, (3)
n= p

where K„" is the mapping of K after the nth
reno rmalization transformation and K~ ' =K„.

A sufficient condition that the infinite p roduct
in Eq. (3) be finite is

p = lim [H(K ""'
) —1]/[R(K "

) —1] &1 .

In the case that K~** is finite we find that p
= X,**, where A, ** is the largest eigenvalue at
the discontinuity fixed point for mappings re-
stricted to S. Since this fixed point is stable
with respect to X) we have ~,**& 1. A similar
proof applies if K~** is infinite, and asymptoti-
cally the mapping is linear in K~, i.e. , K„'
=QBT„8**KBwhich implies in this case that
X,**&1. Assuming that H-1-O(K ') (K„-~),
where e &0, we find that p = (&,**) '

& 1.
The K„dependence of the discontinuity b M(K)

is given by Eq. (3) entirely in terms of the suc-
cessive renormalization transfo rmations of K
and the ordering field Il in the limit II= 0. For
K„+, e.g. , T )T„H= 0, these transfo rmations
will map K~ towards a different fixed point. In
general we expect that 8 & 1 at such a fixed point,
and Eq. (2) then implies that b, M(K) = 0.

In the limit that K~& S approaches the critical
fixed point, Eq. (2) becomes

~M(K) =- ~„*~M(K'')/L,

where

K„'=K„*+Q T„8(KB-Ks').
S=z

(4)

If the matrix T„a has only one relevant (thermal)
eigenvalue &&~ with a corresponding left eigen-
vector y r, Eq. (4) implies the well-known seal-
ing powe r- law singularity'

~M(K)- (u, (', (5)

where uz, ——Q„yr„(K„-K„*)and the critical ex-
ponent P = (lnL - 1n &„*)/ln &r*. This result is ap-
plicable also if T „8 has several relevant eigen-
values ~, & &, & ~, . . . with left eigenvectors y;„.
The condition that KN~ requires that u; = c&

x ~u, ~
*, where u; =Q„y;„(K -K„), &;=ln&;/

ln&, & I, and c; is a constant, with i= 2, 3, .
In this case we set ur=u, and &r*= X, in Eq. (5).
In the case that K„~Q approaches the critical
surface away from the fixed point K~*, these re-
sults are readily extended by substituting for uz
in Eq. (5) the corresponding scaling field fr which
depends nonlinearly on K~.4'

Conditions (b) and (c) can also be readily veri-
fied by examining the properties of the renor-
malization- group trans formations of general Is-
ing-spin models in the limit of zero tempera-
ture. ' It is essential that these transf ormations
preserve the ground-state spin configuration.
This is valid for the construction method pro-
posed by Niemeijer and van Leeuwen' provided
that the Kadanoff cells are suitably chosen" and
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that periodic boundaries are applied in the clus-
ter approximation. "

Let us assume that there are two ordered spin
configurations denoted by + and —which have the
same energy in a subspace of the coupling con-
stants K~. The energy per spin of each config-
uration is f(')(K) =g„f~(')K„, where f„(') are
constants and the condition for degeneracy be-
comes P „(f„' —f„)K„=0. If the renormaliza-
tion transformation preserves the spin ordering,
the scaling equation, Eq. (I), applies to f ' (K)
and f{ )(K) separately with g(K) =gg„K„. Hence
the field H =g(f~(') —f~( )}K„scales according
to

(6)

which verifies condition (b) with H as the order-
ing field. For somewhat more general renor-
malization transformations proposed by Wilson"
and by Kadanoff and Houghton" which depend on
undetermined parameters, one can readily de-
rive conditions" on these parameters which leave
the ground-state spin configuration invariant and

map the subspace for zero temperature into it-
self. However, we cannot show by purely theoret-
ical arguments that some of the detailed proper-
ties which we have assumed for renormalization-
group transformations, e.g. , condition (a), are
valid for all Ising-spin transformations. ' Even
the existence of critical fixed points has been
demonstrated to date in these models only in ap-
proximate calculations.

We have also been able to verify all the condi-
tions discussed in this paper 1n numer1cal calcu-
lations for the square-lattice Ising-spin model,
by applying the cell-cluster approximation of
Niemeijer and van Leeuwen to four cells. ' This
restricts the space of coupling constants K„to
the subspace of nearest- and next-nearest-neigh-
bor spin couplings K, and K2, three- and four-
spin couplings K, and K„and a magnetic field
K In this subspace there occur a variety of
first-order phase transitions. We have consid-
ered in particular first-order phase transitions
in the ferromagnetic domain K, & 0, K, & 0, and
= 0, and in the tricritical domain K, & 0, K, &0,
and &0. In each of these eases we found the
discontinuity fixed point at zero temperature' with
X&**=L. The discontinuous order parameter for
the ferromagnetic transition is basically the mag-
netization Ã, while for the tricritical transition
it is a linear combination of SR and the nearest-

neighbor spin correlation X. Similar results
were also obtained in the domain K, &0, K, = 0,
and X=.O for K as a function of K, .
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