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angular variables. At low temperature, we have
essentially $ «4 which makes PE =Ph+P$'/2&
so that $ scales like T'". From Eq. (4) we ob-
tain a factor (T'")'/T = T'", but we must take
into account that we have only a probability
exp[- &/T] of finding a scattering quasiparticle.
Finally, we obtain VCE -T '"e ' . This behavior
actually agrees with the low-temperature behav-
ior of the relaxation time' for viscosity and ther-
mal conductivity. This is not surprising since
this behavior could be deduced from the same
scaling arguments. In the same way, we expect
the viscosity and thermal-conductivity relaxation
times to behave like l/T' in the A phase. (Nat-
urally, to obtain the viscosity, for example, one
has to take into account other factors than the re-
laxation time, but their temperature dependence
can be easily deduced from a relaxation-time ap-
proximation. 'o)

Finally, it is remarked that when the gap is
completely established, say T/T, -0.7-0.8, the
spin-conserving character of the normal quasi-
particle collisions is no longer felt so that in
this range v'cE should be of order of a typical re-
laxation time at T,.

I am very grateful to V. Ambegaokar, T. Ho„

A. J. Leggett, M. Levy, H. Smith, and C. J. Pet-

hick for numerous discussions on this problem.
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ficient by solving the kinetic equation (1).

Note that, although 7'c& is diverging, ~pcE «j. when
T goes to T~ since the longitudinal frequency coo goes
to zero like (1—T/T ) . For the transverse Iine-
width, one could have situations where the hydrodynam-
ic condition ~vcE «1 is no longer satisfied. But this
would require such high magnetic fields and tempera-
ture so near T~ that the linewidth would be very small
anyway and any effect would be difficult to observe.

I am very grateful to O. Valls for pointing out this
fact to me.
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We show that near the transition temperature T~ the relaxation time introduced in Leg-
gett and Takagi's phenomenological theory of spin relaxation in superfluid He is equal to
the relaxation time of a normal-state quasiparticle at the Fermi energy Bt T, and is in-
dependent of the superfluid state. Combescot and Ebisawa's relaxation time is found to
diverge as (T~ -T) I . These results are obtained by deriving and solving exactly the
Boltzmann equation for quasiparticles in the superfluid.

The authors of two recent Letters'~ in which
spin relaxation in superfluid Fermi liquids is
treated phenomenologically arrive at different

conclusions about NMR linewidths close to the
transition temperature T,. The differing results
reflect differences in the assumptions made about
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the rate of relaxation processes. In this Com-
ment we discuss the problem of spin relaxation
from a microscopic point of view. We derive the
quasiparticle Boltzmann equation valid for tem-
peratures close to T„and then solve it exactly
to calculate the rate of magnetic relaxation pro-
cesses. We obtain microscopic expressions for
the relaxation times introduced by Leggett and
Takagi' (7 „T) and by Combescot and Ebisawa'
(FACE). vzT is found to be equal to the relaxation
time of a normal-state quasiparticle at the Fermi
energy at T, and does not depend on the parti cu
lax state of the superfluid. The latter result
could not have been anticipated on the basis of
phenomenological considerations. v~ is found to
vary as (T, —T) "', in agreement with the work
of Ambegaokar' and Combescot~ but in disagree-
ment with the assumption made in Ref. 2. Since
7 «can be determined directly from NMR mea-
surements, such as the ringing down of the wall-
pinned mode in8- He' ' this gives one a direct
measurement of the quasiparticle relaxation time
at the Fermi energy, a quantity which cannot be
directly measured in any other experiment. This
promises to provide us with valuable new informa-
tion about quasiparticle scattering amplitudes in
the normal state.

The total spin polarization, S, of a superQuid
may be expressed as the sum of two parts'. the
spin from Cooper pairs, S~, and the spin of the
quasiparticles, S,. The first is due to the devia-
tion of the superQuid coherence factors from
their values in the unpolarized state, and the
second is due to the deviation of the quasiparticle
distribution from its value in the unpolarized
state. Consider now a situation in which S, is dif-
ferent from its equilibrium value for the particu-
lar value of S the system has. If the system is
homogeneous, the Boltzmann equation for the dis-
tribution of quasiparticles in the superQuid, n~,
1S

sn ~/st =I{nj,
where I{n~}is the collision integral. Let us con-
sider the experimentally interesting case of lon-
gitudinal relaxation, ' in which the deviation of the
quasiparticle spin from its equilibrium value is
in the same direction as the total spin, which we
take to be the z direction. The most convenient
quasiparticle states to use are ones in which the
z component of spin is diagonal. Let us denote
the single-quasiparticle states in the absence of
any spin polarization by Ip+) and i p ) respective-

ly. Then

S,=+(h/2)os p
n ~, (4)

where 0 =+ 1 is the spin index. In local thermo-
dynamic equilibrium and for small II, Eq. (4) re-
duces to S,=y 'X«IJ, where

is the quasiparticle susceptibility without Fermi-
liquid effects and y is the gyromagnetic ratio.
The left-hand side of the Boltzmann equation may
therefore be written as —a's&(h/2)(enp%E z)
x y2 X„~(BS,/st).

Let us now turn to the collision term, which we
shall calculate only to first order in h. In the
superfluid the number of quasiparticles is not
conserved. One therefore has to take into ac-
count not only processes in which two quasipar-
ticles scatter but a3.so those in which one quasi-
particle decays into three or three coalesce to
produce one. Processes in which four excitations
are created or destroyed to not contribute to lead-
ing order in h. The linearized collision term in
the Boltzmann equation including scattering, co-

(2)

Here &
p

1s not in general equal to 1 since o', also
has matrix elements between states for which the
numbers of quasiparticles differ by two. (Note
that real transitions between such states are not
important in the low-frequency limit h+ «4,
where b, is the superfluid gap. ) These eigenstates
are particularly convenient since the distribution
function, which is a matrix in general, is diago-
nal when written in terms of them.

Let us assume that S, is varying for some rea-
son. As we shall see, at temperatures close to
T„ the characteristic time scale for changes in
S, is long compared with the characteristic time
for the quasiparticle distribution to relax to the
local equilibrium distribution (for a given value
of S,), which is of the order of the normal-state
collision time. Thus on the left-hand side of the
Boltzmann equation we may insert a local equilib-
rium distribution given by

n~'={exp r (E z
', Res&II—)—/ksT]+ 1) '.

IJ, the field acting on the quasiparticles, is es-
sentially the. difference between the up- and down-
spin chemical potentials, ' and E

p
is the quasipar-

ticle energy in the superfluid. The quasiparticle
spin is given by
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alescence, and decay processes may be derived by methods quite analogous to those we used in calcu-
lating the viscosity, ' and is

e'en, /st= —QW„(1,2;3,4)n,'nm'(1-nso)(l -n~o)6p ~p p +p

x (E~+E2 B-~ E-~) [/~+8~( 2(g —ss(~ —st/4)], (6)

where the indices 1-4 refer to momentum and spin variables, the deviation function is defined by n, (1
-n )P;=n; n-, and Wz is the normal-state transition probability. To obtain (6) we used the fact that
for the situation considered here, (p, = —P z, . It is convenient to introduce a modified deviation func-
tion

Q =- —$»[cr(I'/2)sos&2 cosh(x/2)(&8, /&t)/X, o] ',
where r, (~T ) is the characteristic normal-state quasiparticle relaxation time, defined in Jensen,
Smith, and Wilkins, and x is $z/kqT, $z being the normal-state quasiparticle energy measured from
the Fermi energy. Generally Q is anisotropic because of the anisotropy of the superfluid state. (In
both the Anderson-Brinkman-Morel (ABM) and Balian-Werthamer (BW) states, for instance, sp de-
pends on P.) However, the angular-dependent part of Q may be shown to be of order 6/A~T, times the
spherically symmetric part, and therefore Q may be taken to be spherically symmetric. By manipula-
tions similar to those used in calculating the viscosity, ' one finds the following equation for Q:

1 x2+m2 +, (x —x') de,
2 cosh(x/2) 2 2 sinh —(x —x') 4

The effective spin of a quasiparticle, sp, is very nearly unity except for quasiparticles with energies
S4(p). Only collisions involving these quasiparticles violate quasiparticle-spin conservation, and
convert quasiparticle spin into the spin of Cooper pairs. Equation (7) is essentially the same as the
equation for the deviation function in the case of viscosity, but with a few important differences. First,
the equation in the case of viscosity has a parameter a/2, ' which is a ratio of two different angular av-
erages of W~, multiplying the integral term. Here the parameter is identically equal to unity since
quasiparticle spin is conserved in the normal state. Second, in the viscosity equation the quasiparticle
velocity takes the place of the effective quasiparticle spin, sp. As a consequence of quasiparticle-spin
conservation in the normal state, the solution to Eq. (7) is singular in the normal limit (s&-1), since
Q(x) ~1/cosh(x/2) is a solution of the homogeneous equation. Contrary to what one might at first sight
expect, this singular behavior makes the equation trivial to solve, and to leading order in b/k~T„

2 1
m'& 2cosh(x/2)

'

This may easily be demonstrated by expanding Q in terms of the eigenfunctions used in normal-state
transport calculations, and showing that only the lowest eigenfunction is important. The parameter A.,
introduced by Leggett and Takagi, is the Cooper-pair susceptibility, Xco, relative to the total suscep-
tibility, neglecting Fermi-liquid effects, and to leading order in & is

(de /4m) J dx(1 —s'(x, p)) (- & n'/& x) ~ (T, —T)'" .
Calculating the deviation from local equilibrium n» —n» and inserting it into Eq. (4) to determine the
quasiparticle spin S„one finds

ol

os-(5/2) (n» -n»') =S, -r 'X„H=—270 ~S,
po

pQ pG 0 QO +2g g g
(9a)

(9b)
8& A. 2 1

(, (s, r'x.oII) =-(s, r-'x, .&), -
where 7 (0) = 27,/w' is the relaxation time of a normal-state quasiparticle at the Fermi energy. ' Equa-
tion (9b) is easily obtained by calculating (BS,/&t) from Combescot and Ebisawa's kinetic equation. 2

Thus vcp=v(0)/X~ (T,-T) "'.
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To identify Leggett and Takagi's relaxation
time, we note that since the structure of the Coo-
per pairs adjusts to the field in a time - (5/&)
«7cE, their spin polarization S~ (=S —S,) is giv-
en by its equilibrium value, y ' XcpII for the
field H, whence H=y')(c '(S-S,). Using the re-
lation X,o/Xc, = (1 —A)/A. , we can rewrite Eqs. (9)
in the form

8$, 1
8 (0)

(10)

where S~=(1—A)S. Leggett and Takagi's basic
equation is for 7)=S~ —S~ [= —(S,—S,o)], where
S~(S) = AS is the equilibrium value of S~. From
Eq. (10), using the fact that 8S/st=As, the dipo-
lar torque, ' one finds that

which is identical with Leggett and Takagi's Eq.
(7), apart from the replacement of their phenom-
enological relaxation time 7q7 by T(0) Sinc.e 7(0)
is finite at T„ it is obvious that the temperature
dependence of physical quantities such as the cw
resonance linewidths, and relaxation rates in
pulsed NMR and nonlinear longitudinal ringing
experiments agree precisely with those obtained
by Leggett and Takagi. ' Note also that the rela-
tion T cp = T pT/A is valid for arbitrary tempera-
tures and not only near T„where 7qT=T(0). That
7qT is independent of the superfluid state is a re-
sult of the particular form of the collision inte-
gral in the superfluid, and, as we mentioned
above, could not have been anticipated on the ba-
sis of phenomenological calculations. It is phys-
ically reasonable that 7(0) determines the spin
relaxation rate, since as we have seen, only col-
lisions involving quasiparticles with energies
s b,(«k&T) violate quasiparticle-spin conserva-
tion.

The calculations above have a number of impli-
cations for experimental work. First, the lack
of dependence of 7 L& on the superfluid state should

by checked by making measurements in the A. and

8 phases near the polycritical point. Second, the
fact that spin-relaxation measurements deter-
mine 7(0) gives one a consistency relation be-
tween a number of experimental measurements.
The normal-state viscosity depends on the quasi-
particle scattering amplitude through the pararn-
eters T(0) and o.. u may be determined directly
from measurements of the relative change in the
viscosity in the superfluid state close to T„and
hence the normal-state viscosity can now be cal-
culated in terms of experimentally measured
quantities, independent of any assumption about
the angular dependence of the normal-state quasi-
particle scattering amplitude. We plan to give a
more detailed comparison of our results with ex-
periment in a future publication. Apart from giv-
ing one a better understanding of the superfluid
phases of 'He, further measurements of spin re-
laxation will also be of considerable value in help-
ing one to understand quasiparticle scattering in
normal 'He.
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