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A recent measurement of the electron-neutrino angular correlation in Z~ —nev, taken
by itself, is shown to be in remarkable agreement with the Cabibbo model. In contrast,
the electron-spin asymmetry combines with it to distinctly favor the wrong sign for the

axial-vector—to—vector form-factor ratio.

A precise measurement of the electron-neu-
trino angular distribution in the decay Z° —nev
has recently been reported.! The magnitude of
the axial-vector-to-vector form-factor ratio was
determined to be

| g,/f,1=0.435£0.035 (1)

under the assumptions of a V-A interaction, an
octet extension of conserved vector current (CVC)
for the weak-magnetism form factor f,, absence
of the induced pseudotensor form factor g,, and
vanishing momentum transfer (¢?) dependence for
all the form factors.? This corresponds to a mea-
sured electron-neutrino correlation coefficient of

a,,=0.284+0.048. (2)-

The prediction® of the Cabibbo model* for this ra-
tio is
g/f1=-0.343+0.014. (3)

Clearly, agreement on the magnitude appears
to be poor; while, as is well known, the sign can-
not be obtained from this measurement. It has
long been recognized® that this sign—which is
opposite to that expected in the old universal V-A
scheme of Feynman and Gell-Mann®—is a charac-
teristic feature of the Cabibbo model. Thus its
determination constitutes a pivotal test of the
model. In the present note we show that the re-
sults of Ref. 1 can be brought into good agree-
ment with the predicted magnitude for g,/f,. How-

ever, when they are combined with the available
phase-sensitive measurements, the wrong sign
is favored. ,

First, it is important to recognize that the lev-
el of precision attained in Ref. 1 requires the in-
clusion of the ¢? dependence of f,(¢%) and g,(q? be-
cause it gives rise to effects comparable in size
to the stated experimental error. We do this by
introducing a linear slope as follows:

Fi(@® =£,(0)(1 +x;q*/M5?) (4)

and similarly for g,(¢®.? In the spirit of the
quark model, we assume the same ¢® dependence
throughout the baryon octet. Then A, can be ob-
tained by CVC from electron-nucleon scattering
data, and ), from v scattering data.” Our best
estimates are A;=4.06 and 1,=3.61. Using these
slopes (really, only A, is relevant at this point?)
in conjunction with the other assumptions listed
earlier (f,/f,=-1.14; g,=0), the measured value
of a,, given in Eq. (2) implies

| g1/f11= | £,(0)/£,(0)| =0.350 £ 0.032, (5)

in excellent agreement with the Cabibbo model
prediction.

The electron-spin correlation coefficient «, for
polarized Z~ B decay is the most accessible phase-
sensitive parameter. Three experiments have
sought to measure this quantity yielding results
as shown in Table I. Despite the fact that their
precision leaves something to be desired, the
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TABLE I. Summary of experimental results for the
electron-spin asymmetry parameter a, for 2~ —ne v,
The consistency x*=1.4 for two degrees of freedom,

Experiment Events a,
Gershwin® 61 —0.26+0.37
Bogert et al.® 63 +0.36+0,39
Ellis et al.® 43 +0,3919: 33
Weighted mean +0.04+0.27

2See Ref, 8.
bSee Ref. 9.
®See Ref. 10.

three experiments are statistically consistent:
x?=1.4 for two degrees of freedom (d.f.).

We have performed a simple ¥* fit to the weight-
ed mean for o, in Table I and a,, as given in Eq.
(2) above. The x* minima correspond to

&./f1=+0.351+0.031 (6)
with ¥2=1.3 for one d.f., and
g,/f,=—0.335+0,032 ™

with x2=6.2 for one d.f. (1.2% X2 probability). The
non-Cabibbo sign of Eq. (6) is clearly favored.
The two solutions arise because a,,, which is
better determined than «,, carries no informa-
tion about the sign of g,/f,. Within the context of
our assumptions, the value of a,, from Ref. 1
opens, so to speak, fwo rather narrow windows
available to g,/f;. The more roughly measured
parameter o, then imposes a sign preference,
shifting the magnitudes only slightly. Figure 1 is
a graphical presentation of the situation. Note al-
80 that the non-Cabibbo sign would be even more
strongly favored if we neglected the ¢® dependence
of f, and g,.

We wish to conclude by pointing out that the
above discussion emphasizes the need for an ac-
curate measurement of the electron-spin asym-
metry parameter @, in Z” -ne v, The present

- gituation is at best unsatisfactory, with the cru-
cial information on @, coming from an average of
several imprecise experiments. The dramatic
variation of a, with g,/f, (Fig. 1) gives rise to a
very narrow region (a, =~ 0.55 to - 0.75) of con-
sistency with the Cabibbo model. Were «, prov-
en to lie outside this region, then a drastic alter-
ation of our present ideas about the weak interac-
tions of the hadrons would almost certainly be re-
quired.

We thank W. Tanenbaum for a very helpful con-
versation concerning the experiment of Ref. 1.
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FIG. 1. The electron-spin asymmetry parameter «,
as a function of g,/f; for Z-—ne v, The data point is
the weighted mean @, =+0.04+0.27 from Table I. The
“windows” allowed by the results of Ref. 1 are indicat-
ed by vertical lines.
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Although Coulomb-nuclear interference is certainly not a misnomer for the description
of recently observed interference structure for a-particle excitation of 4* states in perma-
nently deformed nuclei, the details of the interference are shown to be more easily un-
derstood as interference between L =2 and L =4 amplitudes.

Recent data and coupled-channel calculations
for inelastic scattering of a particles'"® have
shown striking interference phenomena for exci-
tation of 4* members of rotational bands in per-
manently deformed nuclei. If one assumes that
the Coulomb-nuclear interference of the first 2*
state is an approximate measure of the impact
parameter of a “grazing collision” (4,), then
these phenomena may be summarized as follows:
(i) For nuclei with large-negative-g, deformations
an extremely deep destructive interference mini-
mum for excitation of the 4* state is observed
but at an impact parameter smaller than d, (e.g.,
approximately 0.8 fm smaller for '*¢W); (ii) for
nuclei with near-zero-p, deformations the inter-
ference minimum is shallow and occurs very
close tod,; (iii) for nuclei with positive-g, defor-
mations the destructive interference is very weak
and occurs at an impact parameter larger than
d, (e.g., approximately 1.2 fm larger for '**Sm).
These phenomena have been referred to as Cou-
lomb-nuclear interference; although this is not
incorrect, the purpose of this Comment is to
point out that an easier understanding of these
phenomena is achieved by thinking of the scat-
tering as resulting from interference between
L=2and L =4 amplitudes.

The available data'"® examine the impact-pa-
rameter dependence of the cross sections by mea-
suring excitation functions at large angles. Here,
to reduce computing time, calculations were done
for angular distributions at E,, =20 MeV; this is
merely a simpler method, computationally, to
examine the impact-parameter dependence of the
cross sections. Calculations were performed
with use of the coupled-channel code ECIS 7 In-
tegrations were performed to 40 fm with forty

partial waves; although larger R, and [_,, are
preferable these are certainly adequate to obtain
a physical understanding of the interference. All
calculations done here are for '**W with the use
of the optical potential and deformation param-
eters of Ref. 3 (although the signs of the deforma-
tions were changed for some calculations); the
deformations are listed in Table I. The complete
coupled channel calculation using these param-
eters is shown as curve a in Fig, 1. The deep
minimum near 120° corresponds to the minimum
of the excitation function of Ref. 3 which occurs
at 6,,, =140° near E,,, =19 MeV,

The first possible explanation examined was the
possibility that the effects observed are due to the
L =2 and/or L=4 reorientation matrix elements,
Broglia® has recently predicted shifts of the inter-
ference minima for excitation of the first 2*
states by heavy ions, oblate (8,<0) nuclei shift-
ing to smaller impact parameters and prolate
(B,>0) to larger impact parameters, This pre-
diction is due solely to the presence of the ma-
trix element (2*| | M(E2)| |2*) and its qualitative
similarity to the effects being examined here
make it a promising possibility. To investigate
this two calculations for '**W were performed,
one with all possible rotational-model matrix
elements between the 0%, 2*, and 4* states and
one which included only the matrix elements

TABLE I. Deformation parameters for ¥w,

B> By" i€ By"

0.254 0.192 -0.089 -0.076
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