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Possibility of Observing Self-Interstitials in Cu and Al by Neutron Scattering*
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The librational modes of the (100)-split interstitial in fcc metals can undergo resonant
hybridization with the phonons of the perfect crystal. As in the analogous case of KC1
:CN, this hybridization leads to effects which can be observed by inelastic neutron scat-
tering at concentrations orders of magnitude smaller than those required for the observa-
tion of effects introduced by simple substitutional impurities.

The configuration of the self-interstitial in fcc
metals has long been a matter of controversy.
Very recently, however, experimental and the-
oretical studies have almost conclusively estab-
lished that the split-interstitial or (100)-dumb-
bell configuration is the correct one for copper'
and aluminum' at low temperatures. The inter-
stitial joins a host-lattice atom to form the dumb-
bell which resembles a diatomic molecule cen-
tered at a normal lattice site and oriented along
a cubic axis. Large lattice distortions occur and
the point symmetry around the interstitial site is
reduced from OI, to D,I,. Calculations by Dede-
riehs, Lehmann, and Scholz' for copper indicated
that A. ,„and E& modes of the interstitial occur
at frequencies of about —,

' of the maximum of the
perfect-crystal copper phonon spectrum. The E

g
mode is the twofold degenerate libration of the
dumbbell, which is strongly coupled to elastic
shear stresses; this coupling leads to the large
effects on the shear moduli which have been ob-
served. "

An analogous situation occurs in ionic crystals,
where the introduction of molecular impurities
with internal degrees of freedom whose frequen-
cies lie within the host-crystal spectrum pro-
duces resonant phonon scattering and large ef-
fects on the shear elastic constants. Recently
Walton, Mook, and Wicklow' have shown that in
KCl doped with 6&& 10"/cm' CN ions this reso-
nant mixing is so large that it is easily observ-
able by coherent inelastic scattering. It is im-
portant to understand that at such small concen-
trations the effects due to simple substitutional
impurities with no internal degrees of freedom
are not presently measurable by neutron scatter-
ing. In this Letter we show that the same kind of
direct observation of the internal modes by neu-
tron scattering should be possible for intersti-
tials in aluminum and copper, provided that the
concentration can be made high enough (-0.01%)
and that annealing of the interstitials can be

((u' —D)u + (X/M) x = 0,

(A. /M)u + (&u' —~,')x = 0.

(1a)

(1b)

avoided.
An interstitial produces significant lattice dis-

tortions out to relatively large distances, and
there may be substantial changes in the force
constants between atoms in the region of relaxa-
tion. However, direct coupling to the interstitial,
and hence to its internal modes, will remain re-
stricted primarily to its first shell of neighbors.
Resonant perturbations of the host-crystal pho-
nons, characterized by frequency denominators
of the form 1/(&u' —&uo'), are produced by the mix-
ing of the phonons with the internal modes. The
A. ,„and E„modes of the interstitial correspond
to its three center-of-mass translational mo-
tions. While they appear to have relatively low
frequencies, ' they do not represent additional de-
grees of freedom, do not lead to resonant denom-
inators in the perturbations, and do not contri-
bute directly to the elastic constants. Of the
three internal modes, the A. , g

vibration is ex-
pected to have a frequency well above the perfeet-
crystal spectrum. The E& modes are the only
ones that produce a resonant perturbation of the
phonons which may possibly be observed directly
by coherent inelastic neutron scattering. Here
we adopt a somewhat simplified approach in which
only the direct coupling to these Eg modes is in-
cluded as a perturbation and lattice relaxation is
not treated explicitly. Relaxation effects, insofar
as they are not already contained in our param-
etrized calculations, could be included in a more
rigorous treatment but they would increase the
complexity of the analysis without adding signifi-
cant physical insight into the problem. Our treat-
ment follows the work of Wagner' and Klein. '

The equations of motion for the coupled system
consisting of the lattice and the internal modes
are
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Here u and x are the mass-reduced dynamical coordinates for the lattice and the internal modes, re-
spectively, D is the dynamical matrix of the perfect crystal, and M is the mass of a host atom. cup is
the frequency of the decoupled internal modes (i.e., with the lattice ions fixed), and X is the vector of
coupling coefficients between the internal modes and the lattice. Elimination of the internal coordi-
nates yields

[co' —D —M '(ar' —~,') 'A.A,]u =0. (2)

T»s equation has the form (~'-D -&)u = 0 encountered in localized perturbation theory for substition-
al impurities without internal degrees of freedom, but the important difference is that 4 has a reso-
nant denominator which can greatly enhance the interaction.

The one-phonon neutron coherent-scattering cross section at wave vector q and frequency ~ is'

S«h(q, &u)~ lim Im Q [q e(qj))G&;.(q, cu+i6)[q. F(qj )] . (3)
p+

Here e(qj) is the polarization vector for branch j and G is the Green's function for the crystal contain-
ing defects. Only the case in which G~~ is diagonal is considered here; this occurs along the major
symmetry directions for defects of D4„symmetry in cubic crystals. In the approximation of Elliott
and Taylor, '

G~(q, (d) =GP(q, co) [1 —cGP(q, &u)Z&(q, +)] ',
Zq(q, ~) =e (qj) (g exp[i q (R& —R, ) t (R„R, )] e(qj),

where G& is the unperturbed Green's function, Z~ is the self-energy, c is the concentration of intersti-
tials, and R, is a lattice vector. The i matrix is t=4[1 —(1 —c)G'6] ', where from Eq. (2), b =M '(&u'

—cvo2) ~A.A..
The perturbation matrix 4 has nonzero elements between those neighbors of the dumbbell which are

directly coupled to the E& internal modes in Eqs. (la) and (1b). We introduce symmetry coordinates
which are linear combinations of the displacements of the neighboring ions transforming according to
the irreducible representations of D4&. The t matrix is then block diagonal and since & has E& sym-
metry, only the E& block is nonzero; for coupling to first neighbors this reduces to two identical 4& 4
matrices if the Eg basis functions are chosen appropriately. For each of these 4&& 4 matrices, the ma-
trix AA is a simple diadic, i.e., (AA);& = A. ; &&. A principal-axes transformation can be carried out so
that the diadic becomes diagonal with only one nonzero element of magnitude X'. The transformed I;

matrix then also has only one nonzero element. For the self-energy, the result of all these transfor-
matlons 1s

Z, (q, &u) = (qa)'fq(q)ar, '/((u'- Qo'), (6)

in which ~, =A/M and a is the lattice constant. f&(q) is a dimensionless geometrical function which is
a sum of terms of the form sin(q R&) sin(q R, .)/(qa)', for q-0, it approaches a constant value quad-
ratically. The internal-mode frequency, renormalized by the defect-lattice interaction, is

Q,' = Q,„'+iQ„' = u),'+ (1 —c)(u, '[ReG'((u) + i ImC'((u)],

where G is the appropriate element of the transformed G'. Here c«1, so Q~ and Q„are essentially
independent of concentration. From Eqs. (4), (6), and (7), and using GP= fw2 —uP(qj)] ', where &u(qj)
is the perfect-crystal phonon frequency at qj, we find

c(qa)' f~(q)~, 'Q„'
([ '-Q, '(qj)][ '-Q-'(qj)]]'+(Q.*'[ '- '(qj)]]' '

Q, '(qj) =-'(~'(q j)+Q '+ [(~'(qj) -Q.,')'+4c(qa)'fj(q)~, ']'")
(8)

In the limit Q„-O, ImG&(q, ~) has &-function peaks at Q, (qj). Then, precisely at resonance between
the lattice mode and the renormalized internal modes, i.e., for &u'(qj) =Q~', the peak frequencies are
given to lowest order in c by

Q, (qj)=Q~+ 2 Wc qa[f, (q)]'"((u, '/Q~); (10)
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an expression for the splitting, bQ(qj)=Q+(qj)-Q (qj), follows immediately. At resonance, and for
Qo - 0, the 6-function peaks at Q, in lmG&(q, tu) have the same strength to zeroth order in c. For fi-
nite values of Qo;, the situation becomes more complicated. If Q„' &&2Q~&Q(qj) at resonance,
ImG&(q, (u) still has two peaks, but they are separated by less than AQ(qj); for Qo &v 2QO„AQ(qj),
ImG &(q, &u) has a single broadened peak at m = e (qj)= Q«.

The effects of the internal modes on the elastic constants can be obtained by considering the q-0 be-
havior of Q (qj). In this limit, 4&'(qj) = vz'q'= (Cz/p)q', and

Q '(q j)= v& "q' = (C&'/p)q' = [v&' —ca' fz(0)((u, '/Qo„)'] q',

where p is the density, and v&, C~ and v&', C~' are
the sound velocities and elastic constants in the
perfect and perturbed crystals. The fractional
change in elastic constant per unit concentration
is

q, -=(C, '-C~)/cC,
= —[pa' f, (0)/C~]((u, '/Q~)'. (12)

A relationship between the splitting at resonance
and g~ can be obtained by making two assump-
tions: (1) q is small enough to replace fq(q) by
fz(0) in Eq. (10) and (2) Co in Eq. (7) is approxi-
mately the same at resonance as at w =0. The
first of these should be quite valid for the sys-
tems considered here because the resonances
occur at small values of q. The second assump-
tion is less easily justified because ~,' in Eq. (7)
is a large number and even small changes in
G (tu) can have large effects on Q,. Our calcula-
tions indicate that this assumption is quite valid
for KC1:CN but somewhat less so for Cu and
Al. With these two assumptions, we find from
Eqs. (10) and (12) that

(13)

a simple and useful result that contains no theo-
retical parameters.

We have carried out extensive calculations of
Sz ph for inter stitia ls in Cu and A l and for KC l
:CN . The matrix elements of 6 in real space
were constructed by Brillouin-zone integration
and Kramers-Kronig dispersion relations. For
copper, the frequency coo and the vector X were
restricted to be roughly consistent with the force-
constant estimates of Dederichs, Lehmann, and
Scholz' and adjusted to give 00„=—,'~ ~. The Cu
values were subsequently used as a guide for the
Al calculations. For KCl:CN, 00 is known quite
accurately from infrared measurements. In all
three cases, the g's calculated directly from the
dispersion curves were forced to be close to the
measured values.

Figure 1 shows the hybridization between the
internal modes and the TA phonons along the
[100]direction in copper; the curves were plotted
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FIG. 1. Hybridization between internal and phonon
modes in copper containing self-interstitials.

!directly from the peaks in S„h. The concentra-
tion is the same as that used by Walton, Mook,
and ¹icklow for KCl:CN and the calculations in-
dicate that the hybridization effect should be even
greater for the interstitials in Cu and Al if this
concentration could be reached. At q =0 in Fig.
I, there is a, modest but non-negligible difference
between Q,„(to =0), shown as the dashed horizon-
tal line, and Q~(&u=QO„). This implies that the
validity of the second assumption leading to Eq.
(13) is beginning to break down, i.e., the change
in Qo„and 00; in going from +=0 to ~=GO„ is not
negligible. As indicated by Fig. 1, the calculated
curves for S„h in the region of resonance exhibit
a two-peaked structure for c = 0.0037. Calcula-
tions were also performed for two much lower
concentrations (c = 0.0006, 0.000 06); for these
cases, Q„.' &v 2Q~bQ as discussed above, and
single broadened peaks are produced. Table I
lists results for Cu and Al interstitials and for
KCl:CN . The final column gives values for the
splitting at resonance calculated from Eq. (13)
using the measured values of g."' As already
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TABLE I. Results for Cu, Al, and KC1:CN . c is
the concentration in parts per million, N the number of
defects in units of 10 /cm, 0 is dimensionless, and

AQI2n is in THz.

KC1:CN

3700
600

60
3700

800
80

3700

310
50

5
230

50
5
6

—30

—32 b

0.40
0.16
0.05
0.37
0.17
0.05
0.16

g related to C44.
b

g related to C«-C».

mentioned, Eq. (13) appears to be a good approxi-
mation in KCl:CN, but in Cu and Al it appears
to overestimate the splitting. However, since
we are not certain of the experimental value of
0, it is not yet possible to evaluate the accuracy
in these cases.

The priciple question of interest here, of
course, is whether or not the internal modes
can be observed directly by neutron scattering
via their coupling to the lattice modes. Table l
clearly shows the problem. Whereas it is rela-
tively easy to obtain a concentration of c = 0.0037
CN ions in KCl it is not likely that this concen-
tration of interstitials in fcc metals can be ob-
tained. With present experimental techniques in
neutron scattering, splittings, shifts, and broad-
enings of the order of 0.05 THz can be observed.
Table I suggests that a concentration of 0.00006

in Cu gives at best a marginal chance for observ-
ing the effects due to internal modes. At a con-
centration of 0.0006 on the other hand, both Table
l and our calculations of S„h indicate that the hy-
bridization effects should be observable in a
carefully controlled experiment. We believe that
the direct observation of the internal modes of
the split interstitial in fcc metals awaits only
the attainment of the proper concentration in the
near future.
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The nematic-smectic-A transition temperature of mixtures of HBAB jp-[(p-hexyloxy-
benzylidene)-amino) benzonitriiej and CBOOA [N-p-cyanobenzylidene-p-n-octyloxyani-
line] becomes multivalued with increasing concentration of HBAB. The nematic phase
occurs at both a higher and a lower temperature than the smectic phase. Measurements
of the bend elastic constant as a function of concentration are presented.

By mixing HBAB' (p-[(p-hexyloxbenzylidene)-
amino] benzonitrilej in CBOOA' (N-p-cyanoben-
zylidene-p-n-octyloxyaniline) (Fig. 1), I have
found that a smectic phase may be formed which

reverts to the nematic phase at still /Osvex tem-
peratures. As far as I can ascertain, this is the
first time such an effect has been observed. Mea-
surements of the bend elastic constant, K,/)(„on


