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TABLE I. Upper limit on the cross sections for nar-
row resonances at three different masses.

2.25 GeV 3.1 GeV 3.7 GeV

7ra
K+7r

pp
K+K

+r 7r

pK
K+p
pr
x'p

lxlp 33

4 x 10 33

~ 0 ~

lxlp '3

8xlp

7x 10
2 x 10 3'

4 x 10 3~

2x]p 33

4 x 10 3'

8xlp "
4xlp 34

5xlp 3'

5xlp 34

4xlp "
4xlp 35

4 x 1P
4xlp "

Ixlp "
4xlp "
2xlp 3'

lxlp 3'

3xlp 3'

3xlp "
8xlp 36

5xlp 34

Vxlp 36

The spectrum increases with mass because of
the increase of the acceptance, and then decreas-
es again at higher mass because of the production
mechanism. The individual spectra exhibit the
expected statistical fluctuations, but there is no
sharp peak in the mass region 1.25-5.0 GeV when
all the overlapping spectra are compared

Using a production mechanism for a particle in
the c.m. system of

d'oldp. *'dp
ii

* = c exp(- 6p.*)/& *,

independent of p ~~* and a persistent 5-standard-
deviation peak above the background as a candi-
date for a new particle, we obtain typical upper
limits of production times branching ratio for
new resonances shown in Table I.

This result contradicts most of the present the-
oretical attempts to understand the existence of
the J particle based on the charm model or the
baryon-antibaryon model and so forth. ' It should
be noted, however, that the analysis at the pres-

ent stage does not exclude an ordinary wide reso-
nance of a width of a few hundred MeV. Finding
such a resonance would depend on a detailed
analysis of the acceptance and production mecha-
nism, which we have not done.
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It is shown that the 0 meson, the J+=1 daughter of the Pomeron, is quite successful
in predicting a number of rates for duality-violating processes.

Recently Freund and Nambu' have succeeded in
constructing a model for the duality-violating y
—pv and $(3105) —pn amplitudes which meets with
quantitative success. Basically, the decays pro-

ceed via pole dominance through an intermediary,
the O(J =1 ) meson, an SU(4) singlet and the
daughter of the Pomeron. . We extend the Freund-
Nambu model to production and to other decays,
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~ps. =fpv(~~& + 0' + 0 ) O (1 )

=f (0.53q+1.65''+q, )O(0 ),

(2)

with SU(6) suggesting fp„=fp~. The tensor (T)
couplings of f, f', and f„with nonet mixing, are

making analogous use of several other mesons in
the Pomeron family. Specifically, we consider
a+b-g +X, y+X, ('+X, O(l )+X, and rj, +X,
where a+ b designates any hadronic initial state
(e.g. , &p, pp, pd, . . .) which does not contain A.

or c quarks and in which a duality suppression
mechanism is required for strong production.
We also calculate e'e -O(1 ) —p

The decay processes we consider are g'-p&,
f'-n~, O(2') -vm, y-pp, and j)-AA.

The most familiar pole-dominance model is
that of the photon-vector-meson coupling with

f „2/m„~=9:I:2:8for p:u:y:g,

where p depends on one's theory of SU(4) symme-
try breaking. In the literature p =0, 2, 3, and 4

appear. With p =3 a best fit is found to V-e'e .'
The pole couplings of p, &u, y, and g to O(1 ) and
of q, q', and 7), to O(0 ) are taken to be SU(4)
symmetric, with the nonet mixing scheme for the
vector mesons and the Dashen et a/. ' mixing
scheme for the 0 mesons. Thus

(e) (f) a+

analogous to Eq. (2).
With these definitions, a general inclusive

strong spin-averaged production cross section
for a duality-forbidden state q referring to Fig.
1(a) is

F&G. 1. Pole diagrams for duality-violating processes.

fS do' 1 fp,
ir dtdM2 28(m -m 2) +m I' (m ' —m ) im I'

where A„,. is the exclusive amplitude for producing one of a set of off-mass-shell mesons (n) plus a set
of particles labeled by j. The set of mesons n are the neutral members of an SU(4) multiplet with the
same Z as the 0 meson being considered, and which can be produced in duality-allowed processes.
SU(4) symmetry for the off-mass amplitude A„,(m, ) implies A„,(m, ')/A, ,(m, ') —= 1. Then

dfdM 2 dtdM 2 (m 2 m 2)2/m 21' 2 m 2 m 2)2+m 21

where

(5)

, =2 f(„m,' —m„'+am„i'„

and d'v'(m, ')/dtdM, ' is the off-shell inclusive production cross section for the particle 1. Similarly,
for producing the 0 meson itself, referring to Fig. 1(b), the expression for 0 production is obtained
from Eq. (5) by striking the first propagator term and replacing m, ' by m p'.

As our first example let us calculate the production of the g(3105) in a proton-proton collision and
its subsequent decay into e+e [Fig. 1(e)], where n is the &u and r is the g, as compared to a vector-
dominated background t Fig. 1(f)].

d 0' d vb~
.d p d p dp d p (p+yp ) =~ 2 f~~ mg I'g(mq mp)

(6)

420



VOI-UME )5, NUMBER 7 PHYSICAL REVIEW LETTERS 18 AUGUsr 1975

A check on the reliability of this estimate consists in using the same model to calculate the duality-
forbidden y production amplitude

d'o~ d'v (mP 0.0042 for mo=42,
dt dM„' dt M„' 0.0040 for mo = v S. (8)

In a recent experiment of Ayres et al. ' the total and differential cross sections for & p —yn have been
measured, the density matrix similarity with mp -u&n at higher energies noted, and an experimental
ratio reported at 5 and 6 GeV/c,

where (R=(1+f&z/f& ) ', m~=—mz, and' foal=0. 137 GeV'for mo=v2 GeV and 0.194 GeV' for mo=43
GeV. Integrating this expression over the 20-MeV resolution of Aubert et al. , using the p = 3 parame-
trization of the yV coupling, we find that Eq. (6) yields a signal-to-background ratio of 19 (105) for
mo'=2 (3) GeV'.

These values are in rather good agreement with the Aubert et al. ' data which seem to show a back-
ground of 2 or 3 events and a peak height of from 40 to 80 events. We should also keep in mind that
our naive vector-dominated background is a lower-limit estimate.

With use of Eq. (5), the absolute cross section for ( production in terms of off-mass-shell ~ produc-
tion amplitude is

d o~ d v~(m ) 51.5X10 ' for m =v'2
2

-- 2- -7 (7)dtdM„2 dtdM, 2 )8.0x10 ' for mo=vS.

= 0.0035 2 0.0010,
v(w p —u)n)

(9)

in good agreement with Eq. (8).
The same approach yields the cross section for g'(3700) production in terms of the g cross section:

d'o'~ d'v~ ' f i 'd'cr (m i') d o (m ') ' 0.2 for m =42
dtdM„' dtdM„' fz& dtdM„' dtdM„' 0.18 for mo=/3. (io)

Assuming that the off-shell ~ production amplitudes do not change appreciably between m~2 and m&.2,

we have, for the e'e final state,

8 tdM„' ' f„ I ...-~ r, ,
'

Using the lower limit for the width of the g', ' we find that (11) is a 0.05(fo&./fo&)', where f&./f& may be
estimated if a common strong decay mode can be observed, e.g. , the pv mode,

(i3)

gl ~ P7I
' mg PRO PPl gl PPl g fPlg

2 2 2 2 2 3 2

( )2 2 2 2 3 12
Fg~ p~ m~i —mo mg —mp m~. fg

From Eq. (8) the cross section for O(1 ) production is

d'a ~' ~ d'o (mo') 0.019 for mo=42,
dtdM„' dtdM„' 0.013 for mo=43.

One may also ask whether the O(1 ) might be found in the e e final state in the Aubert et al. experi-
ment. Comparing the production process, Fig. 1(e), with n being the &u and r being the sum of the u,
y, and g, to a vector-meson-dominated background, Fig. 1(f), we find

d' (O0(1 ) -e'+e ) d'ot„ 6.68X10 ' for mo=+2 GeV,
d'p'd'p d'p'd'p q &~++~-~2 2 2.3 X10 ' for mo= K3 GeV. (i4)

At the Stanford Linear Accelerator Center, the O(1 ) effect in e'e -O(1 ) -e'e or p'p, is also
small, with little help from the interference effect because the O(1 ) is so broad. A simple calculation
yields

o(e'e -O(1 ) - p, 'p. )/o'(e'e —p'y. :QED) =10 '. (15)

Using Eq. (6) we can calculate the inclusive cross section for q„which will be. mediated by the O(0 )
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and the q and q'; we have, with fo„=foJ, and m„& 2 GeV,
C

0"c d 0
— xI0 '.

QtdM 2 dtdM 2

Production of f' and f, may be analogously calculated, with the value of for inferred from decay data.
The experimental limit F&.-„&12 MeV indicates that foz, «0. 185 GeV (0.28 GeV) for mo'= 2 GeV'
(3 GeV) implies I'oIs+& „&69MeV (30 MeV).

Finally, the partial width for g(3105) -pp may be calculated via the sequential decay chain g-O(1 )
-&u-pp, with the result

where g„» js sgg$uated at Ne g mass. Assuming ideal mixing and universal isospin current coupling,
we have

go.u go- 6 5
9 2 9 2

4w 4m 4 4&

on shell. Thus we have

g~-„2(~„'~i

Similarly we have, from the sequential-pole model, '

(18)

(19)

Defining

k"(sory'(m e')

g p, '(m~) g ~~'(m ') '

it is reasonable that x ~1 since we expect these amplitudes to extrapolate off shell in a qualitatively
similar way. Thus we have

r - 87r
e

X P +Pvf

If we estimate further that
r r, ,„=6i5keV,
~q pm

I y gm

we have

(20)

(21)

(22)

0.14
x

%ith x = I this is consistent with experimental results. '
A similar calculation for the AA final state indicates I's ~JF& ~~

"0.9, reasonably close to the ex-
perimental result. '
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