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near Percolation Threshold
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Strongly anisotropic magnets at low temperatures with many (quenched) nonmagnetic
impurities are shown to deviate from usual dynamical scaling assumptions near the criti-
cal concentration; instead of the time, the logarithm of the time is the basic variable.
Analysis of previous Monte Carlo data confirms the static droplet picture used here,
which fulfills for the first time the homogeneity, analyticity, and symmetry require-
ments of static scaling.

If in a spin- & Ising model with nearest-neighbor
ferromagnetic interactions a fraction 1-p of
spins is replaced randomly by nonmagnetic atoms
(zero exchange energy), then the Curie tempera-
ture Tc(p) decreases from T= Tc(1) at p =1 to
TC=0 at p =p, (percolation threshold). For T
«Tc(1), al. l spins connected by interactions have
to be parallel. Thus a "cluster, "defined as a set
of interaction-connected spins, a.cts like a single
large ("superparamagnetic") spin. For zero mag-
netic field, the magnetization contributions of the
many finite clusters cancel because of their ran-
dom orientations; spontaneous magnetization
exists only for p &p, where one infinite cluster
appears; see Kirkpatrick, ' Essam, ' and Shante
and Kirkpatrick' for reviews. The present paper
calculates the critical slowing down for p -p, of
the response to a change in the magnetic field,
using a droplet model. " Throughout the paper I
a,ssume T «Tc(1) to be constant. Monte Carlo
calculations" wi11 confirM the present droplet
picture, in contrast to other choices."Quenched
substitutional alloys like AuFe allow possible ex-
perimental tests for not too low concentrations
(above 15% Fe)"; contrary to the work of Smith"
the present paper does not apply this percolation
model to spin glasses with long-range oscillating
interactions.

I et c„be the average number per spin of clus-
ters contalnlng Pg splns each. Every flnlte clus-
ter size n gives a contribution nc„M„ to the mag-
netization M (measured in units of the saturation
magnetization), where the orientation factor is
M„=tanh(nh) in equilibrium, with h=(magnetic
field) x(magnetic moment)/k s T. The infinite
cluster, oriented either up or down, contains the
fraction 1 —Pnc„of spins. (Here and later, the
abbreviation Q, the summation over n from 1 to
~, excludes the infinite cluster. ) Thus 5~nc„= 1
for p &p, and is &1 for p &p,. The cluster num-

bers c„are independent of the magnetic field
since the impurities are assumed to be quenched.
Thus the equation of state is

M=M(I, p) =~(1-Qnc„)+inc„M„,
M„= tanh(nIt),

and has the desired symmetry which is so diffi-
cult to achieve for the droplet model of pure Is-
ing magnets: M(- It) = —M(h). The "impure"
droplet picture"' for the c„assumes clusters
of the same n to have the same "perimeter. "
Similar to Fisher, "for p & p, and large n, I a,s-
sume c„&cn 'exp(en'), where eccp, -p. [In con-
trast, Refs. 8 and 9 assumed c„o-n 'exp(- b'n).
The choice 5'cf- l~l " in Ref. 9 1eads to undesired
nonanalyticities in M(It, p) if p =p, for fixed h «0.]

The dominating contributions to the sum in (1)
a.rise from cluster sizes n around a typical drop-
let size nt defined as n t= I el "'or n t

——1/It on the
coexistence curve and critical isotherm, respec-
tively. For these cluster sizes the argument of
the exponential in c„is of order unity. Thus, at
the critical point It = e = 0, the size n

& (with drop-
let radius - coherence length () diverges. The
summation in (1) gives an additional factor n t, re-
sulting in a spontaneous magnetization M ~ + I ~l ~

= +.n &' '. In this way the assumption for the clus-
ter numbers e„with its two phenomenological ex-
ponents o and 7. gives the static-sealing results
customary for such simple droplet models" '.
Along the coexistence curve, the free energy
varies as (- e)' ", the spontaneous magnetization
as (- s), and the susceptibility as (- e) I, where
as along the "critical isotherm" a=0, i.e., p=p„
one has a nonzero magnetic field h ~M . Thus
the usual exponents o. , P, y, and 6 are defined
and related by 2 —n = y+ 2P = P(5+1) whereas the
droplet exponents are expressed as v=1/P b and



VOLUME )5, NUMBER 6 PHYSICAL REVIEW LETTERS 11 AuGUsT 1975

~= 2+1/5, as usual. For the paramagnetic re-
gion p &p„e &0, the total number of spins in fi-
nite clusters must equal the total number of
spins, i.e.

inc„(p &p,) =1=) nc„(p=p, ).

For this purpose, one can use analogously to
Reatto and Rastelli"

(2)

c„~n 'e'" /(1+Be""') (3)

with B =B(b) such that Eq. (2) is fulfilled. " (More
generally, ' c„c&n 'f(x), x=en', f(x) analytic and
universal, f, x ' s[f(+x)-f(0)]dx=0 for + and
&0 for —.) The resulting Eq. (1) fulfills the ho-
mogeneity, analyticity, symmetry, and univer-
sality requirements of static scaling, ' the first
explicit expression with these properties for gen-
eral exponents. [Equations (1) and (3) give an es-
sential singularity'" at h =0 as function of h for
both e &0 and a&0.]

Are these assumptions, which contradict those
of Refs. 8.and 9, correct'? The Monte Carlo data
of Refs. 6 and 7, usually overlooked, test these

assumptions, particularly' for dimensionality d
= 2. Although fewer Monte Carlo steps were used
than in the cluster simulation for pure Ising sys-
tems, "the present analysis allows for a more
complete test. than in Ref. 14 and leads to the fol-
lowing results. (i) For p &p„n'c„fir.st increas-
es with n, then decreases, as expected from
Eq. (3). (ii) For fixed n, the cluster numbers
c„(p) have maxima at p, „&p„as Fig. 1 shows:

in Fig. I shows c„ccn '=n ' ' 'for two dimensions
(n ""'for d = 3). (iv) Figure 2 indicates that
for fixed p = 0.55 &0.50 =p„ the cluster numbers
c„decay as exp(- const xn') for large n, again
with o =0.36. (v) The inset in Fig. 2 suggests
analytical behavior for fixed cluster sizes: c„/c„.
cc1-const(p-p, )+. . . at a fixed ratio n/n', as
required by Eq. (3). The alternative theories"
with c„c&n 'e' " predict for col p~, „=p, in Fig.
1, a line with slope 1 in Fig. 2, and a maximum
at P =P, for the curve in the inset of Fig. 2; thus
whereas the present theory' is consistent with
the Monte Carlo data, ' the previous theories"

1,0
10 100 1000 n

Cn

-10

0,5-
-0,1

0,2 -10 3

0,1

0,05-

02 03 0,4 05
, P

0,6

0,02-
I

10
I

100
I

1000

FIG. 1. Log-log plot of the Monte Carlo values for p~~x, where the cluster numbers c„(p) reach their maximum
at fixed size n as a function of concentration p, versus n The inse. t at the center shows a typical curve V'„(=P„c„,
n =21 to 50, in units of 10 &number of lattice sites) for the triangular lattice, The present theory predicts p~~„-p ccn =n ' 8, whereas p~~ =p in the theories of Refs. 8 and . The inset in the upper right-hand corner is
a log-log plot of the "critical cluster numbers" c„(p = p ) 0 n versus n, normalized to c~o ——1 and averaged over
five two-dimensional lattices. The Monte Carlo raw data are taken from Ref. 6 where, for n &10, only averages of
cluster numbers c„are given for the intervals of n between 11 and 20, between 21 and 50, between 51 and 100, be-
tween 101 and 1000, and between 1001 and 10000 (reduction of statistical errors t). The n in the figures is the geo-
metric mean of the two endpoints of the interval.
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FIG. 2. Log-log plot of log, o[c„(p )/c„(p) 1 versus n,
where e„ is averaged over triangular-site and square-
bond percolation at p=0.55; here p =0.50 exactly. The
present theory predicts c„(p,)/c„(p) =exp(lain ) and
thus a line with slope g in this log{log)-log plot, while
Befs. 8 and 9 predict exp(b'n) for this ratio and thus a
slope of unity. The inset shows as a function of p —p,
(in percent) the ratio

ioo 50

pc„/Pc„,
n =5i n =mi

averaged over five two-dimensional lattices. The pre-
sent theory predicts for this ratio a linear variation
around p =p whereas Refs. 8 and 9 predicted a maxi-
mum at p =p . The Monte Carlo raw data are taken
from Ref. 6.

are not. In conclusion, the percolation clusters
follow a size distribution similar to the one of
pure magnets. "

[Log-log plots of the paramagnetic susceptibil-
ity and ferromagnetic spontaneous magnetization
give"' P~,- 0.~1, y~, = 2.23 +0.2, P d, =0.35
+0.05, and y„3=1.85+0.2, in rough agreement
with the series estimates' P, , =0.14, y, ,=2.4,

yg 3 1.7, and the present direct estimates for 0
and ~. Separately" I discuss why these exponents
differ from the "pure" Ising exponents near
Tc(1). Also the static correlation function" and
the crossover from Tc(p) &0 to Tc(p, ) =0 are
calculated there. "]

Now I discuss the dynamic behavior on the fer-
romagnetic side (p slightly larger than p, ) where
the I3 correction in Eq. (3) is neglected . The
clusters change their orientation with a rate R„;
these rates cause the cluster orientation factor
M„(t) in Eq. (1) to lag behind a, sudden change in
the magnetic field whereas the cluster numbers

FIG. 3. Predicted ferromagnetic relaxation function
4—= &M(t)/EM(0), Eq. (4), showing the logarithmic dy-
namical scaling through the "time" g t which varies as
some power of ln(Rot), as defined after Eq. (4). The
three lower scales indicate the real time t (in seconds;
3 yr=10 sec) for x=0, Ro ——10' sec ', and In(Roto)
=ln(10' to) =w/a ~I/(p -p ) equal to 32, 23, and 11.5,
respectively. Obviously, true critical behavior will be
difficult to observe. (The numbers on the curves give
the susceptibility exponent y.)

c„remain unchanged: M„(t) —M„(t= ~) ~ exp(- A„t).
Presumably A„=A, exp(- mn") due to thermal
jumping or quantum-mechanical tunneling over
the energy barrier of (Ising) cluster reorienta. -
tion; e.g. , r=1, se-1 for tunneling. " If at time
t= 0 a small field 0 is switched off, then with
M„(t}= tanh(nh) exp(- A„ t) we find M(t) from Eq.
(1) for t-~, e-0:

M(t) -M(-) J'.",xy 'e "dx() M(0)-M( ) f" y 's "dx
as plotted in Fig. 3. Here x, =—

I el [(1/zo) ln(A, t)] 'I"
= [ln(A, t)/In(A, t,)]"", which defines t, as a decay
time. This dependence on In(A, t)/ln(A, t, ) is not
the usual type of dynamical scaling where 4 is a
function of the ratio t/t, only. Instead a new type
of "logarithmic dynamical scaling" is found with
C = C(t'/t, ') where t'—= ln(Aot) and to'—= ln(A, to) re-
place the true times t and t,.

As the time scales (in seconds) of Fig. 3 indi-
cate, the true equilibrium and the logarithmic-
scaling asymptotic decay towards equilibrium
will be difficult to observe for very small p, -p
because of the then very long "critical" relaxa-
tion times t,. It should be possible, however, to
measure the drastic increase in the decay time,
t, cecx(pc ontslp -p, l "~'), if the phase transition
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p =p, is approached at constant 7; Also one
could test the present scaling prediction for the
static equation of state in random substitutional
magnetic alloys, in particular the relation 6=1
+ rlP

Thus a simple calculation led to complicated
dynamical behavior, a percolation droplet picture
consistent with Monte Carlo results was devel-
oped, and experiments were suggested as tests
for parts of the present predictions. I thank
K. Binder for suggesting parts of this work, and
him, J. W. Essam, D. P. Landau, H. Muller-
Krumbhaar, D. A. Smith, and G. Toulouse for
discussions and information.
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Orientation of Nucleic Acids in High Magnetic Fields
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The magnetic orientation of native and synthetic nucleic acids has been observed for
the first time by measuring the Cotton-Mouton effect in magnetic fields B up to 14 T.
Our data give evidence that a partial alignment of the nucleic acids takes place in the
plane perpendicular to 8 and that the diamagnetically anisotropic bases are responsible
for this orientation. The method reported here represents a new way to determine the
persistence length of flexible polymers.

The magnetically induced orientation of large
biological systems like cells with diamagnetic
anisotropy has been observed' ' in magnetic
fields around 1 T, and the orientation of polymer
aggregates having a size of a few microns has re-
cently been reported' for polystyrene solutions
subjected to 1.7 T. The availability of higher
magnetic fields makes possible the measurable
orientation also of single macromolecules in di-
lute solutions. We report here the first experi-
ments on the orientation of high-molecular-weight

native deoxyribonucleic acid (DNA) and of some
synthetic nucleic acids in aqueous solution in high
magnetic fields up to 14 T. Using these examples
we show that the method described here repre-
sents a new and general way to determine the
persistence length of flexible polymers.

Let us first consider the case of a rigid rod
made up of N diamagnetically anisotropic subunits
with g~~&x&, y~~ and y being the absolute suscept-
ibility values parallel and perpendicular to the
rod axis, respectively. The magnetic energy re-
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