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Dupree' obtained a simple expression for the res-
onance width which is in agreement with the re-
su]t here. ~2
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' However, the method here of introducing the reso-
nance widths into the weak-turbulence equations (i.e.,
by smoothing over both waves and particles) is not in
agreement with that of Dupree. This can be traced to
Dupree's neglect of the effect of his operator on fp(g)
which probably should be retained.
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We report calculations which suggest that there is a physically important four-atom ex-
change process in bcc He and thus an important four-spin term in the exchange Hamil-
tonian. A simple, mean-field analysis of this Hamiltonian appears to account for a num-
ber of the perplexing properties of bcc He. An understanding of other properties may
require treatment of the exact four-spin term. It is our hope to stimulate such effort by
this Letter.

We report the results of calculations which suggest there is a physically important four-atom ex-
change process in bcc solid He. The process gives rise to a four sPin term in t-he effective spin or
exchange Hamiltonian with an exchange energy comparable to the nearest-neighbor two-spin term. A

simple-minded mean-field treatment suggests that this four-spin term could lead to a temperature-de-
pendent exchange frequency which offers partial insight to the several perplexing properties of bcc
solid He

To facilitate discussion we define the exchange Hamiltonian including pair, triple, and the important
cyclic quadruple exchange'.

(z)

i&j z&g

-4d„„„5 [(T, T,)(T, T,}+(T,-T,)(T, T,.) -(T,.T,)(T, T,}].
i & j&A&l

The first two-spin term involves nearest-neigh-
bor spins jthe (1) over the sum], while the sec-
ond involves next-nearest-neighbor spins [the

(2)]. Finally the one four-spin term involves four
atoms located at the corners of the rhombus, ly-

l

ing in the (110) plane, whose sides .j, jk, kl, and
li are first-neighbor distances (the subscript
1111 in 8»»») and whose diagonals ik and jl are
second- and third-nearest neighbors (the 23).
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Later in this Letter we will present a summary
of the calculation for the various exchange con-
stants. First we want to briefly discuss the
anomalies in 'He solid within the context of a
mean-field approximation for (1) in which, for
simplicity, we ignore the next-nearest-neighbor
exchange terms except to indicate those situa-
tions where they may play a noticeable role.
Then (1) reduces to

(x)
H= —2J,(T) QI; I, , (2)

where

J,(T) = J', —6J„,+ 3J„„„(1+4(I Fj,). (3)

In (3) the term (I QI, corresponds to the thermal
expectation value of the scalar product of near;-
est-neighbor spins. Since we expect 'He solid to
become antiferromagnetic at low temperatures,
then (I I), will change from zero at high temper-
ature to something like —-', in the ordered phase.
Taking a simple analytic form for this switching
behavior, and using numbers we have calculated,
we might approximate (3) above the transition by

J,(T) =-0.65+0.4 tanh(2/T), (4)

where J, and T are measured in millikelvins.
[The factor 2 in the tanh(2/T) is an estimate of
the transition temperature in the absence of

Jzzyx, 2g 1

There are several puzzling anomalies in the
'He solid data which we discuss in terms of (2)
and (4). We restrict ourselves to a single densi-
ty, corresponding to a molar volume of 24.0 cm'/
mole.

High temperatu-re results (T&20 mK') In this.—
regime, J, is a temperature-independent con-
stant. High-temperature susceptibility measure-
ments' indicate it is negative (antiferromagnetic),
with its best value of —0.65 mK coming from the
pressure measurements. 4 When the pressure
measurements are extended to finite magnetic
fields, ' it appears necessary to assume an addi-
tional ferromagnetic next-nearest-neighbor inter-
action of strength J,/J, ——0.2."All of the high
temperature data can be reconciled within such
a two-parameter model, in which J, is ferromag-
netic."Ratios in the vicinity of —0.2 have been
theoretically calculated. "' In the present work
we can only specify + 0.03 & J,/J, & —0.2 because
of 10% or so uncertainties in the various exchange
frequencies, and large cancelations in J, —4cfyy2

+ J»»» [the high-temperature value of J,(T)].

Low-temperature results (T & 20 mK).—(i) tran-
sition temperature. A constant first-neighbor
exchange frequency of —0.65 mK corresponds
(via TN= 2.751J I) to an antiferromagnetic transi-
tion temperature of 1.8 mK (a bit higher if J, & 0},
whereas the first observed transition in the solid
is 1.1 mK. ' Clearly (4) would produce a lower
transition temperature. Based on its low-tem-
perature limit, we get 0.7 mK. But we would
stress that the results here and below, being
sensitive to the guessed interpolation for J,(T),
are at best semiquantitative.

(ii) Specific heat. A high-temperature expan-
sion for the specific heat in powers of T ' with
use of an antiferromagnetic Heisenberg Hamilto-
nian results in a T term with a positive coeffi-
cient (even larger if J, &0); whereas the experi-
ments'" indicate a negative one. A temperature-
dependent exchange such as (4) can result in a
negative coefficient, although our crude argu. —

ment gives a coefficient a factor of 2 too small.
Near the transition temperature of tbe solid the
specific heat has a pronounced bump'" near 2
mK prior to the entropy anomaly at 1.1 mK. Our
mean-field model cannot explain this structure.
On the other hand, the original Hamiltonian (1)
we propose may be able to explain it. Specifical-
ly we propose to the phase-transition-theory
community the following question: Does H„
(1) with its four-spin term have the same behav-
ior as a Heisenberg Hamiltonian in the vicinity of
the (depressed) transition temperature? Or can
it exhibit structure consistent with that observed
in bcc 'He V

(jjj) Spin diffusion. As additional evidence that
something extraordinary is occurring at about 2

mK in the solid, there is the fact that the spin
diffusion coefficient D drops sharply by over 30%
for decreasing temperature about 2 mK, "which
leads us once again to the idea that the effective
J (O-.D) is strongly temperature dependent.

(iv} H-T phase bounda, ry. In terms of a mean-
field model, an external magnetic field would
favor a positive (I f), in (3) and hence increase
I J, l. Presumably this effect would increase the
magnetic field at which the spin-flop to paramag-
netic-solid transition occurs over that predicted
by a near-neighbor Heisenberg Hamiltonian con-
sistent with the observed spin-ordering tempera-
ture. Only limited experimental data" exist for
the II- T phase boundary.

Finally we turn to the actual calculation of
cJQQ $ $ 23 and the other exchange frequencie s. There
is an extensive literature" which underpins our
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J~= —Q~ exp(- Ad~'/4)I~(A, Q)), (6)

where dp is a distance in configuration space be-
tween the original and exchanged atoms. Values
of dp in units of the nearest-neighbor distance R
are given for various exchanges in Table I. The

calculation. The exchange frequencies can be
written in terms of integrals involving the Jas-
trow-Gaussian sensate for the many-body wave
function in solid 'He:

0 =IIexpt- ~(r; —R;)'l &f(r;, ), (5)
S i&j

where r, and R,. specify the atom and lattice site
positions, respectively.

The scalar coefficient A is proportional to the
(Einstein) frequency describing the harmonic mo-
tion of an atom about its lattice site. In our cal-
culation we generalize A to a matrix'4 in order to
take into account a more realistic description of
the atomic motion based on a self-consistent cal-
culation" of the phonon frequencies. Accordingly
the A, ff listed in Table I for the four largest ex-
change frequencies reflects phonon frequencies
which predominate in that exchange process.

The Jastrow function f(r, ,) is roughly a step
function used to describe the short-range corre-
lations, by preventing two atoms from approach. -
ing closer than their hard-core diameter. The
energy of solid He ean be written in terms of
integrals involving (. Various calculations"
which in effect minimize the energy with respect
to functional form and pa, rameters of (5), yield
very similar Jastrow functions. On the other
hand the energy is not very sensitive to A. Nev-
ertheless, it now appears on the basis of recent
Monte Carlo calculations, ' that A may be 30%
smaller than the range of values previously ac-
cepted. We exploit this possibility in our work.

In terms of the wave function (5) the exchange
frequency for a given exchange p of atoms is

attempt frequency for the exchange process, with-
in the Einstein approximation for the atomic mo-
tion, is given by A~=(8/2M)d~(A'/7t)"'.

The exchange frequencies are dominated by the
other two factors in (6). The first factor is called
the Gaussian overlap. The exponential factor is
a measure of the overlap of the wave functions of
the original and exchanged atoms. Note that it is
a very sensitive function of the phonon frequen-
cies appropriate to a given exchange, as is indi-
cated by the values of A, ff in Table I. The seem-
ingly small difference between A, ff for the qua-
drupole and near-neighbor-pair cases results io
nearly an order of magnitude increase in the ratio
J„»»/J, over what its value would be in the
Einstein approximation, where all the A, ff would

be a single value.
The second factor is related to hard-core ef-

fects. The final factor Ip corrects for the fact
that the Gaussian overlap overestimates the prob-
ability for atoms to exchange by not excluding
routes of exchange forbidden by the hard-core
repulsion of the atoms. This effect is most im-
portant for pair exchange where straight-line ex-
change would have the atoms sitting on top of
each other. In this case I, includes the dominant
factor exp(- 2Ao') -~, where o is the hard-core
radius. This strong dependence on A does not oc-
cur in Ip for three- and four-atom exchange,
where the short-range correlation effects are
largely geometric in nature. ' The values for Ip
in Table I are extrapolated from the results of
Ref. 2 based on Monte Carlo integrations (for the
Einstein case), with the exception of the last
(and crucial) entry which has been estimated on
the basis of the experience gained from three-
atom exchange.

In the next to the last column of Table I are
the results for Jp. It is clear that Jiiii 23 is too
small but so is J, by at least a factor of 20, if it
is to agree with the high-temperature measure-

TABLE I. Exchange frequencies and related intermediate numbers for bcc 3He (24.0 cms/
mole).

(d~/28)'
jeff
(A-') 0& exp(-A &&d&~/4)

Jp
(mK)

Sealed
Jp

(mK)

Pair (1)
(2)

Triple (112)
Quadruple (1111,23)

i/2
a/3
5/6

1

1.350
1.129
1.295
1.136

2.00
0.602
0.0104
0.0042

0.014
0.0067
0.086
0.09

-0.028
-0.0040
-0,00089
-0.00038

-1.02
—0.25
—0.085
-0.045
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ments. At this stage we take advantage of the
fact that the more accurate Monte Carlo work'
suggests that the true A values may be 30% or so
smaller than those consistent with Ref. 15 on
which our work is based. Accordingly we have
decreased A, or more accurately, rescaled down-
ward the phonon frequencies by 32% so that J,(T
= ~} [see (3)j agrees with the value —0.65 mK de-
duced from the high-temperature, zero-field,
pressure measurements. 4 The resulting numbers
are shown in the last column, and have been used
in arriving at the various numerical values in
our paper [e.g. , 91J,», »I is 0.4 mK, the factor
used in (4)]. We emphasize that J,(T= ~), J»»

~ »,
and J,(T=~) are only weakly related, and so our
conclusions about the last two quantities are not
compromised by our procedure of fitting the first.
We also emphasize that the A value consistent
with our rescaled phonon frequencies (those used
in calculating the last column of Table I) is in
fact in good agreement with that of Ref. 8. As a
result of these calculations we argue that this
four-atom exchange (the next largest one is an
order of magnitude smaller) must be taken into
account in any treatment of the phase transition
of bcc 'He.
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