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We elucidate the kinetic process of plasma heating by the resonant excitation of the
shear Alfven wave. The heating occurs as a result of the damping of the modified (by the
finite ion Larmor radius and electron inertia) Alfven wave which is excited by mode con-
version at the resonant layer. The heating rates of ions and of electrons are comparable
in the collisional regime; otherwise electrons are predominantly heated.

It has been shown recently' that the singular
property of the shear Alfvdn wave, &a2=k((2v~2(x),
in a nonuniform plasma can be utilized to heat a
plasma by resonant absorption. However, be-
cause the ideal magnetohydrodynamic (MHD)
equations were used, the detailed absorption
mechanism was not clear. Here, we present a
result of kinetic theory and show that (1) the in-
coming perturbation is converted at the resonant
layer to the modified (by the finite ion Larmor
radius and electron inertia) Alfvdn wave that
propagates across the magnetic field, quite anal-
ogous to the case of the Bernstein wave, ' (2) the
modified Alfvdn wave is dissipated by ions as a
result of viscous damping, as well as by electrons
as a result of collisional or Landau damping, and
(3) the total absorption rate is approximately the
same as the MHD result' if vr/&up; 2 O(1), where
v and ~ are the effective damping rate and the an-
gular frequency of the wave, r is the plasma ra-
dius, and p,. is the average ion Larmor radius.

We also show that the applied frequency ~ =k~~vA

can be chosen such that it becomes comparable
to the bounce frequency ~~ of electrons trapped
in the local mirror, and hence the heating can
eliminate or reduce the number of marginally
trapped electrons. The scheme should, there-
fore, be quite attractive in presenting a possibil-
ity of eliminating the two fundamental problems
of the tokamak: heating and enhanced diffusion
due to banana-orbit effects.

We first discuss the absorption rate. For this
purpose, we derive the wave equation of the shear
Alfven wave with finite ion Larmor radius and
electron inertia in a nonuniform plasma. We use
the drift kinetic equation for electrons and the
Vlasov equation for ions. For field quantities we
use two-field components, a scalar potential g
[to describe the perpendicular (with respect to
the magnetic field) electric field E~= —V~q], and
a parallel electric field E ~]. E]~ is introduced
here because in this low-frequency regime elec-

(1)

(2)

n,. -n, =O,

k& )(+IIV +@ II) ~i"0 (I ~

Equation (2) comes from [Vx(VxE)]))= p,, BJ')(/st.
We first consider a regime in which k„p;&1. For
a low-P plasma with m, /m; «P «1, the number-
density perturbations for ions and electrons, n;
and n„and the current-density perturbation in
the parallel direction, J~~, are obtained from the
Vlasov equation by use of the operator technique, '

2 d 3 6

—en /eo ———i((ape /k(( vr, )k((gL:))(1+i' ),

~+~0(+pe /k(! v Te )(1+~~8)g@lli

(4)

(5)

where vr, is the electron thermal speed (&v„ for
P & m, /m, ), g(x) is a nonuniform density profile
normalized to unity at the maximum-density
point' as shown in Fig. 1, and 5 (&0) is the frac-
tional dissipation rate of the wave due to the vis-
cous damping (5,. -14v, ,/15~), ' collisional damp-
ing (5,- v„v„/k()vz, , ), or Landau damping (6, —&u/

k))vr, ). In deriving these expressions, we have
assumed k(((-R ') «k~(-r ') «ls/sxl(-p, . '), and
have kept the lowest-or'der corrections due to

tron dynamics is mainly in the parallel direction
and the parallel conductivity of electrons with fi-
nite inertia is finite. These variables convenient-
ly decouple the compressional magnetic field per-
turbation 8

~~

~ V'& & E j.
For simplicity, we employ a local planar geom-

etry in which x is the direction of nonuniformity
which is perpendicular to the dc magnetic field;
z is parallel to the magnetic field. In the toroid-
al system, x, y, and z correspond to radial, po-
loidal, and toroidal coordinates, respectively.
For the frequency range ~ «~„(the ion cyclo-
tron frequency), quasi neutrality can be assumed.
The field equations for y(x) exp[i(k~y +k)) z —et)]
and E ))(x) exp[i(k~y +k)) z —~t) ] become
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p,.' &'/&x', where R is the major toroidal radius.
These assumptions, which are easily justified for
a tokamak plasma, conveniently decouple the ion
acoustic wave, the drift wave, and the magneto-
sonic wave from the Alfven wave considered here.

The wave equation can be constructed by substi-
tuting Eqs. (3)—(5) into (1) and (2). Inside the res-
onant points x =+ x„where ~ =k), vA (+ x,) (i.e. ,

!x) & x, in Fig. 1), we ignore k~ with respect to d/
dx because d/dx -p,. '; then the equation becomes

g{x)

f&x)

xo xo

FIG. 1. Density profile g(z) and schematic profile of
wave potential y(x).

d a dy ~ 3 2 . d d 1 T 2 . d dy
dx k dx k 4 ' ' dx dx -T ' 'dx dVA fl DA g i x— (6)

where vz is the Alfven speed at the maximum-density point, and T, and T,. are the electron and ion
temperatures. If we note the proportionality between y and g„(g is the plasma displacement vector),
when p,. -0, this wave equation reduces to the one obtained by use of the ideal MHD equations, ' i.e. ,

dpd'")d =' (6')

where

e(x) = a&'/k, )'uA (x) —1. (7) )

Equation (6) shows that on the higher-density side of the resonant points + xo [e(+ xo) = 0], there exists
a propagating wave. In a uniform plasma, the modified Alfven wave has the following dispersion rela-
tion:

&d =k)) SA (1 +[4(1 H ) +(T /T~)(1 Me)]p k

y =C[Pf dx [e(x)] '+(7)/~) cot(e ——,'w)],

where

~=Be/ex!x, -r ',

(9)

e= f 'k„(x)d =-e„+ie,. (10)

k„(x) is the nonuniform wave number (complex)

If 6-0', k„ is real when vA(x) is smaller than
&A(~ x~). Therefore, for a nonuniform plasma
with a finite extent in the x direction, the wave
may be trapped at the central region of the plas-
ma, similar to the case of the Bernstein wave. '
Consequently, to calculate the absorption rate
one can no longer depend on the resonant absorp-
tion that originates from the logarithmic singular-
ity of Eq. (6'), but one must solve Eq. (6).

Since the problem is analogous to the case of
the Bernstein wave (or, more precisely, Buchs-
baum-Hasegawa resonance), one can use the re-
sult obtained for that case. ' If we assume (dg/
dx)/g«p; ', Eq. (6) can be solved by connecting
the WEB solutions in the regions (xl &x, and Ixl
& x,. The solution for I xl &x, is then

,( )
1 a'/k, )'vA'(x) —1

p,.
'

—,'(I —i6,) +(T,/T, )(I —i 6,)

While, the solution of Eq. (6'), which is obtained

by use of the ideal MHD equations, reads

q ~=C[p f, dx[~(x)] ' i~/~]- (9I)

As was shown in Ref. 1, the absorption rate of
the applied field energy is proportional to the
imaginary part of y in Eqs. (9) and (9'). With the
correction for finite ion Larmor radius, if x, -p;,
the imaginary part has a sharp structure because
of the cotangent function [Eq. (9)]. However, as
in the case of tokamaks, where xo» p,.(-10 xo to
10 'xo), if ez=6xo/p; ~ O(1), the cotangent func-
tion reaches —i, where 6= (45;/3+ T,5,/T, )/2(4
+T,/T, )' . Thus, we recover the MHD result,
Eq. (9'). The absorption rate per cycle is given
by (B„'/p,)~/k~, where B„is the wave magnetic
field at x =x,.

I et us now discuss the heating rate of different
species. Because the absorption is localized on-
ly near x =xo, whereas the heating is more uni-
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formly distributed, we should distinguish them carefully. To study this problem, we need the disper-
sion relation for k~p, &1. In this regime, Eq. (3) is modified to

en, /e, = —(~p, '/vr, ')(1 —i6,. ')y,

where' 6, '= [3(v+ I)/8vm](v;;/~)k„p, , and the corresponding dispersion relation is given by
I

2 2 2 2 Te/Tau =kit eAk„P' 1+ '5 + 1+ '6 '

(3 z)

(8)

By comparing Eqs. (8) and (8'), we see that the two dispersion relations connect rather smoothly. The
heating rate of ions, nodT, /dt, is then obtained as

n,dT, /dt = —,
' Re(J E) ~« = Re[(cu/k„)en;E„*]

0.7v, ,(k„p,)'(e, !E„!'/2)u)„.'/(u„' for k„p,. & 1,

0.9v&,(k, p;) '(e, !E„!'/2)u&~;2/+„2 for k„p, &1.
(12)

Here we note that near x =x„(e,l E„l'/2) ~~ /&u„' = B,'/2 p, and also that because S~/Sk„«(k„p;) ', the
local heating rate remains approximately constant, and is given by v, , B„'(x,)/2p, ,

The heating rate of electrons is obtained from Eqs. (1) and (5),

n ,dT, /dt = —,
' Re(J

I
E ~*) = cv 5,(~~,'Ik~~'vr, ') eol Egl'/2

+5,(k„p,)'(T,/T, ). (e, !E„!'./2)&u~ /&u„' for k„p, &1,

m6, (k„p,) (T,/T;)(to I E,!2/2)e&,2/m„m for k„p,. & 1.

The fractional electron damping rate 6, is given by

(13)

!(v„/k~~vz, ,}vA/vr, for collisional damping,

na/k~~vr, + o. '(u/mg' for Landau damping, 7

where n is a reduction factor -0.1 which desig-
nates the circulating electrons, and a' is nt pp (p

& total
For tokamak parameters, we see that the heat-

ing rates of electrons and ions are approximately
the same if the collisional damping dominates. If
we assume a machine with a toroidal field of 50
kG, a plasma density of 10'4 cm ', and a major
radius R of 10 m, &u = v+R becomes -10' sec '.
Hence, if T;s1 keV, then v, ;&3x10' sec ' and
ion heating due to the direct dissipation of the
wave may be expected. However, if T; &1 keV,
the dissipation due to the electron Landau damp-
ing dominates, and the ions may be heated by ion-
electron collisions. To deposit energy of the or-
der of 1 MJ/m' in 1 sec into the plasma, the am-
plitude of the modulated magnetic field is obtained
from B 2/2p0=10'/&u5-10'; thus B~ 500 G, wh-ere

we took the average ~ to be 10 '. Note that B, ob-
tained above is the y component of the wave mag-
netic field after the mode conversion. B, can be
shown from Eq. (6) to be enhanced and is related
to B„atx =x, through B,= (I/k„)(K/p;}"'B„. If we
use this relation and note that the area of absorp-
tion is given by L„L,(Imk„) ', the present result
for the heating rate - ~5B,'L„L,(Imk„) ' can be

reduced to the absorption rate obtained by the
MHD result which is &uB„'L,L,k, 'z/k, . Namely,
the applied magnetic field, I3„, can be much
smaller than I3, and is on the order of 15 G.

For the tokamaks, we propose to use also co

-(~,) so that one may reduce the number of
trapped electrons which will eventually reduce
the diffusion rate. ' Such a choice is possible be-
cause' (~~)-vz, (r/R)'~'/Rq, q=rB, /RBe, where-
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We propose an approximate but simple and general procedure for treating resonance
broadening in weak-turbulence interactions. The resonance-broadening corrections to
the wave-particle, wave-wave, nonlinear-Landau-damping, and four-wave weak-turbu-
lence equations are computed as examples. The procedure may be used to predict at the
outset whether resonance broadening occurs in a specific higher-order process.

'The major modification to the conventional
weak-turbulence equations demanded by renor-
malized plasma turbulence theory is a broaden-
ing of the resonances. ' A particularly fruitful
and powerful approach is to postulate this result
and then determine from simple physical consid-
erations the extent of the broadening. In other
words, it is decided a priori that it is unphysical
and incorrect to allow the evolution of the plasma
to be determined by quantities describing a "gran-
ulation" of wave or particle coordinate space that
is finer than a certain resonance-broadening

!
width. It then follows that the weak-turbulence

equations are improved through the use of smoothed-
over driving quantities

j v+&v

fo(v)-=f,(v')dv',
v-~v

j k+ (Sk

N(k) =
2

N(k') dk',
k 6k

where R and 6k are resonance-broadening widths
and reflect the level of turbulence present. (ln
this Letter we work, for simplicity, in one di-
mension only. ) As an illustrative example, the
modified nonlinear-Landau-damping equations
could then be put in the form

Bfo 8 Bf~ BNi
et ev ~v ' Bt

(2)

D =
JF N~N+6[&u~ —(u2 —(k~ -k2)v]dk~dk2,

dk~N~H Bfo

k~ 0& 8V v= {~~-~ }/{kg-k.}
(4)

where II is a coupling coefficient. Other weak-turbulence equations are similarly modifiers obviously,
in all cases the modified equations conserve the same quantities as the unmodified equations such as
energy, momentum, and particles. '

It remains, of course, to calculate the resonance widths for particular interactions. It is expected
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