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The relation between the s-state Ashkin-Teller-Potts (ATP) model and the percolation
problem given by Fortuin and Kasteleyn is used to formulate a renormalization-group
treatment of the percolation problem. Both an q expansion nea'r 6 spatial dimensions and
cluster approximations for the recursion relations of a triangular lattice are used. Ser-
ies results for the ATP model are adapted to the percolation problem.

In the last few years the renormalization group"
(RG) has provided a detailed understanding of
phase transitions in a large number of model
systems. In this Letter we will show how this ap-
proach can be applied to the percolation problem. '
The systems we study are described as follows:
For the site (bond) problem we consider a lattice
in which sites (bonds) are randomly occupied with
probability p and are vacant with probability q = 1
—p. For p &p, occupied sites (bonds) form un-
connected clusters. The mean square cluster
size S(p) diverges as p- p, and for p &p, a frac-
tion of sites (bonds), P(p), are in an infinitely
large cluster. This "phase transition" at p =p,
differs from the usual ones treated by the RG in
that (a) the system is not described by a Hamil-
tonian, and (b) there is no obvious analog of the
partition function.

The basis of our work is a series of papers by
Kasteleyn and Fortuin4 who consider an "s-state"
Ashkin-Teller-Potts (ATP) model defined by the
Hamiltonian
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for the s-state model. These relations have been
used only in a qualitative way up to now: i.e., to
state that'P(p)- lp -p, ls and S(p) Ip -p. l

' as
p-p, . The usefulness of the relation between
percolation and the ATP model is that all the ap-
paratus, e.g. series expansions, RG, etc. , used
for a Hamiltonian formulation can be applied to
the percolation problem. This program has not
been proposed until now.

A simple test and application of these ideas is
to use Eq. (3) to generate power-series expan-
sions in q forP, S, and "specific heat" C from
the low-temperature series expansion given for

K(') = —J g (s5„,„-1)—hg (s5„., —1), (1)
&ij&

where for each site i the variable n; assumes the
values 1, 2, . . ., s, the sum (ij) is over nearest-
neighbor pairs, and &„ is the Kronecker delta.
For s = 2 Eq. (1) is an Ising Hamiltonian. Alter-
natively X ' can be written in terms of vectors
v; confined to point in the direction from the cen-
ter of a multihedron towards one of its vertices.
In this realization
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X(') =-J'(s-1) gv; ~ v1 —(s-1)g v; h, (2)

since v; ' v; = 1 if v; II vt, and v; ' v; = —(s —1)
otherwise. The ATP model and the percolation
problem are related by

(»)
(sb)

where q = e 8 and E is the free energy per site

FIG. 1. Results of Pads approximants for bond dilu-
tion on the square lattice. The exponents P, y, and e
as obtained from the residues of the Pade approximants
PN(q) j@J (q) are plotted versus the location of the zero
of Qz(q) near q~ =0.5. The values of N and M for each
point are given {N is the upper number, M the lower).
The solid line is a smooth curve through the points.
The value of the exponent with an associated uncertain-
ty is given by the bar obtained from the solid curve at
the exact value of q~ =0.5.
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+2x —5x +4x —2xv, (4a)

where x' = e " is the renormalized cell-cell

the simple square lattice by Straley and Fisher'
and Kihara, Midzuno, and Shizume. ' We then
formed Pads approximants to the functions ex-
pected to have simple poles, i.e.

d dC(q) d in'(q) d 1n[q 'S(q)]
dq dq ' dq ' dq

as done in Ref. 6 for s=3. The residues at the
poles of the respective Pade approximants at q
= q* give the corresponding exponents n, P, and

y. Since the values of the exponents so obtained
are correlated with the corresponding values of
q* (see Fig. I) we determined the residues from
their values at the exact' value of q~: viz. q*
=0.5. The results are summarized and com-
pared to previous results' " in Table I.

We have also used the RG to treat the s-state
model. One technique we used was the cluster
approximation for the recursion relations due to
Niemeyer and van Leeuwen. " In that scheme it
is convenient to consider triangular cells on a
triangular lattice. One renormalization step con-
sists in summing over all variables in a cell sub-
ject to the cell variable n» under the assumption
of a fixed value Q. Thus for each Q there are s'
configurations as depicted in Fig. 2. For a two-
cell cluster A-B the recursion relation defined
by invariance of the partition function is, for s
=1

TABLE I. Numerical results for exponents for the
square lattice.

Series in

q for bond
dilution

Monte-Carlo
simulation for
site dilution

This work Dean-Bird ~

Series
inp

for site
dilution b

-0.7 +0.2
P 0.148 +0.004 0.16 +0.02

1.58 +0.2 2.1 +0.2
V 1.5 +0.2

0.14 + 0.02
1.9 +0.2 2.1+0.2

' These exponents were obtained by analyzing the data
of Qef. 9. This result for p agrees with that found by
S. Kirkpatrick (unpublished) .

See Hef. 10.' This value is not inconsistent with the results of
Ref. 11.

x~z' ——2x +x —4x 4+ 5x —4x + x (4b)

The appropriate averaged renormalized interac-
tion is then x'=(x~s')'"(x&c')"'. A similar treat-
ment of three-cell clusters following the method
of Niemeyer and van Leeuwen and relating cell
and site variables as in the two-cell-cluster ap-
proximation gives the results shown in Table II.
In this approximation we had to allow for a re-
normalized three-site interaction of the form

interaction and x = e ' is the initial site-site
interaction. For the two-cell cluster A. -C the re-
cursion relation is

(5)

for sites i, j, and k being mutual nearest neighbors. At present our results are very crude as indi-
cated by the rather poor value of x*—= q, we get, 0.792, compared to the exact result, ' q, =—0.653. Thus
the Niemeyer-van Leeuwen scheme seems to work slightly less well here than for the Ising model. "
The current results for v, which is quite sensitive to the size of the thermal eigenvalue, are not at all
reliable.

Before proceeding to the & expansion, let us investigate the mean-field theory for the s-state ATP
model. In the ground state of Eq. (2), all v; are parallel and lie along one of the multihedral directions
n&. Thus, in the ordered state, there will be an order parameter v=vn&. For s42 v &0 corresponds
to v lying along a direction which is not equivalent to a multihedral direction 8;. Accordingly, for s W2

we still only consider mean-field solutions having v &0. Within the RG this restriction is related to the
fact that the recursion relations do not connect the region in these spaces for which w in Eq. (7) below
is positive with that for which w &0. The mean-field free energy per site for Eq. (2) to fourth order
in v is

(s —I) 'E= 2(T —T,)v' —-', T(s —2)v'+, T(s' —3s+3)v',

where T is the temperature and 7.', is the mean-field transition temperature. At s =2, the cubic term
disappears and the usual mean-field theory for the Ising model is regained. For s &2, the cubic term
is negative for positive v, and a first-order transition takes place. " For s &2, the cubic term is posi-
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tive for positive v and a continuous transition occurs with v =+2(T, -T)/~s —2~T for T & T„ i.e. P =1.
Also one finds y=1 and &= z. The exact solution of the percolation problem on the Cayley tree yields
the same values for these exponents. ""Using these results, Toulouse" predicted that if the expo-
nents for the percolation problem are to become nonclassical, they should do so at six dimensions. He
argued that the Cayley tree is an infinite dimensional lattice, and that the exponents v, P, and y should
maintain their infinite-dimensional values down to a critical dimension d, at which the scaling relation
dv=2P+y should be satisfied. From this, one finds d, = 6. We expect, therefore, that nonclassical ex-
ponents for the percolation problem can be obtained by expanding in & = 6 —d.

In order to apply the & expansion, we need a continuum generalization of the s-state ATP model.
Such a generalization was introduced by Priest and Lubensky" following Golner" and involves diagonal
traceless tensors Q;~ of dimension s. The Hamiltonian for this model is

K=2 J d"x(x TrQ2+ g V; Q»V& Q»)+ f d"x[w TrQ~+u(TrQ2)2+v Tr Q ] . (~)
ijk

If m = 0, this Hamiltonian has a fixed-point struc-
ture in 4 —& dimensions that is very similar to
that of the hypercubic model. " For sv 4 0, there
is a stable fixed point in 6 —e dimensions with u*
= v*=0(e') and (m*)' = as/18K~(10 - 3s), where
Kz ' ——2 'm ' I'(d/2), and exponents q= —2-', e, v=2
+,e, y=1+-', e, and p=l —-', e for s=1. We feel
that these exponents can safely be identified with
the percolation, exponents though the stability of
the Hamiltonian at the fixed point for large Tr Q'
has not yet been thoroughly investigated.

It is tempting to identify the above fixed point
at s =3 with the continuous transition that is
known to occur in the ATP models in two dimen-
sions. " We hesitate to make this identification
because of the absence of a mean-field theory
predicting a second-order transition in that case.

Q Q

Q R

Finally, we have performed a series of simula-
tions of the percolation problem by generating
pseudo random configurations of randomly oc-
cupied sites on a square lattice. In this way we
could estimate P(P) and S(P) for P P,. In addi-
tion we could evaluate the average, denoted by
( ), over configurations and over R of the prob-
ability, g(R, R+r), that R and R+t are in the
same cluster of occupied sites. Our results are
consistent with the form (g(R, R+x)) t-
&&exp[-x/g(P)] but by no means prove its correct-
ness. Furthermore, we plotted $ versus ~P -P, ~

to get v. Because of the finite sample size used
in the studies it was not possible to determine q
and v with great accuracy. It was possible how-
ever to determine v(q): That is, given the value
of q, v could be determined. The values in Table
I correspond to the intersection of such a curve
with the curve qv=2P (scaling law). Alternative-
ly, for each configuration we plotted lnS versus
ln( to get q since we expect that S(P)- g(P) ". In-
deed we found lnSCC ln) did hold configuration by
configuration in spite of the occurrences of fluc-
tuations in the average concentration about its
nominal value but the value of g we found from
this procedure (q= 0.5) is not reliable.

It appears that P = 0.15 is the most accurately

/

/
/

/
/

No. of
cells

Fixed-point values
Z jk T e-L!kT

TABLE D. Results of cluster approximations to the
RG for triango. lar lattice.

FIG. 2. Top: Possible values of site variables sub-
ject to the cell variable being Q. Here Q, 8, and S are
all distinct. Bottom: Illustration of cells used for the
two-cell and three-cell cluster approximation for the
HG.

0.664
0.786 1.014

2.4
8.0

0.664
0.792 ~

~ Calculated as the value of q on the criticaj. surface
for which L= 0.
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known exponent. '0 If one sets e = —0.6, v=1.3,
y=2.3, and g=0.23, all of which values are with-
in the error ranges presently obtained, then the
various scaling relations, o. =2-dv and n+2P
+y=2, are satisfied. Hence these values repre-
sent the most reasonable estimates we can make
at present. It is interesting that g appears to de-
pend only weakly (if at all) on s.

The numerical results of the various approach-
es are not yet consistent, probably because the
RG methods have not yet been sufficiently refined.
However, other finite-cluster RG schemes" are
being investigated and will no doubt lead to im-
proved accuracy.

The authors would like to thank Dr. S. Kirk-
patrick for providing them with the data of Dean
and Bird.
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We present the results of gravitational radiation experiments with two 1400-kg anten-
nas at po

——145 Hz. The square antennas, 1.65x1.65&0.19 m, Q&~2.0x10, with electro-
static transducers of P ~1.8& 10, have mean effective noise energy D~ 0.034kT„. The
observed cross correlation of the outputs of the two detectors gives an upper limit for the
relation between the mean energy spectrum density E(vo) and the daily occurrence rate
Nz of gravitational radiation pulses: E(vo)K&'~ ~(3.6+&'4) &106 J m Hz ' day '~ .

Large energy fluxes of gravitational radiation
(GR) observed by Weber' at 166{)Hz have not yet
been confirmed. ' Search for GR in other frequen-
cy regions should help settle the issue and deter-
mine the GR spectrum distribution, if any. We
report here the results of the correlation mea-

surement on GR performed with two 1400-kg an-
tennas at 145 Hz.

The square antennas, 1.65&&1.65&&0.19 m with
a cut on each side (Fig. 1), are fabricated from
aluminum alloy (52SR) plates. The structure has
symmetry D,I,. The fundamental in-plane vibra-
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