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We present high-temperature series through tenth order for the susceptibility of ap'
classical scalar models with bilinear nearest-neighbor interactions in the absence of
symmetry-breaking fields. As an example of the use of these results we examine the
tricritical behavior of triple-well Landau-Wilson models which interpolate between the
Blume-Capel and Riedel-Wegner models. The general series are given for the fcc, bcc,
and simple cubic lattices.

We have derived new tenth-order, high-temper-
ature series for the susceptibility tensor X of a
broad class of classical lattice models, and pre-
sent in closed form the series coefficients for the
subclass of models with scalar order parameter
on the three cubic lattices. We believe that these
results represent a breakthrough of fundamental
importance. All previous treatments' have in-
volved numerically deriving the series for a sin-
gle model at a time; and many specialized tech-
niques which have been used to obtain series of
useful length apply only to limited c/asses of mod-
els (e.g. , models for which all articulated dia-
grams and/or diagrams with multiple bonds are
absent from the linked-cluster expansion' ). We
know of no prior method which produces series
of comparable length for as broad a class of mod-
els as is encompassed by our method. In addition
to its generality, our method has the advantage
that the linked-cluster expansion is obtained fo&
mally (through tenth order) for all models at
once. Thus we obtain analytical expressions for
the series coefficients for all models of a given
class. The fact that we obtain the series coef-
ficients analytically rather than numerically
makes it particularly easy to study the depen-

dence of critical-point properties on parameters
entering the Hamiltonian, to map out universality
classes, to investigate crossover behavior near
unstable fixed points, and to make direct contact
with the renormalization-group approach to crit-
ical phenomena. '

The models to which our results are applicable
include all classical models with Hamiltonians of
the form

-„=Z~[S()]»~RES( )~ S("~). (l)
r r

Here, S(r) is a scalar, m-component vector, or
n&&n tensor variable with discrete or continuous
(but even) domain, J is the exchange energy, the
sums over r and 6 extend over all nearest-neigh-
bor pairs of lattice sites, W is an even function
of the components of S, and S(r)~ S(r+ 5) is the
(most generally, weighted) inner product of S(r)
and S(r+ 5). There are several familiar cases
to which these results apply, including (i) scalar
model™—-the spin-S Ising models, ' the Blume-
Capel model, ' and the one-component Landau-
Wilson continuous-spin models', and (ii) vector
model — the anisotropic Heisenberg and planar
Heisenberg models' and the m-component Lan-
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dau-Wilson models. ' As an example of the use-
fulness and generality of these results, we ana-
lyze below the loci of tricritical points of a par-
ticular class of scalar Landau-Wilson models
which interpolate between the Blume-Capel4 and
Riedel-Wegner models. ' Less familar applica-
tions of these results also include lattice models
for liquid crystals with tensor order parame-
ters, ' and classical phonon models for displacive
and order-disorder structural phase transitions. '

The series for X were obtained by first solving
for the outer-product correlation function, G (R)
=(S(r) +S(r+R)), and then using the fluctuation
theorem to obtain the reduced susceptibility ten-
sor X =+-, G (R). To obtain the series for G(R),
we employed the excluded-volume linked-cluster
expansion' in a generalized Stanley-Kaplan recur-
sive form. " The uniqueness of our treatment
lies in the fact that we do not reperform the ex-
pansion for each new model and lattice, but rath-
er incorporate the particular lattice and class of
models (which are specified by sets of lattice
constants and graph weights, respectively') with
the previously calculated (through tenth order)
formal structure of the linked-cluster expansion.
Since the lattice constants need only be evaluated
once for a given lattice, we ultimately only need
to specify the set of graph weights appropriate to
a given class of models.

For models with a scalar order parameter, a
further significant simplification obtains. Name-
ly, the weight associated with any graph is ob-
tained as a finite sum of finite products of "bare-
vertex weights. " This enables u—for each lat-
tic=-= -to obtain the series coefficients analytical-

Tr (S2lew[s])/Tr (ew[s]) (2)

Thus I2) is the average of the 2lth power of S with
respect to the potential well W[s]. Here the
trace operation indicates the sum (or integral)
over the domain of definition of S. We can now
discuss Table I. The results are tabulated in
each order for all three lattices at once. That
is, the order 1,2, . . . , 10 is specified, followed
by a table of data describing the coefficient of
that order for the three lattices. The numbers
(m„m4, m„m„m„,m») in parentheses at the
start of each line represent a product of vertex
weights:

6

(m„m„m„m„m„,m„)-g (I„)».
/=I

(Through eighth order, only m „.. . ,m„are list-
ed since m»—= 0.) The three numbers following
(m». . . ,m») in a given line are the factors mul-
tiplying that particular product in Nth order for
the simple cubic (sc), bec, and fcc lattices, re-
spectively. ]'f we denote such a factor as Fz"(m»
. . . , m»), where N is the order and I. (=sc, bcc,
and fec) is the lattice, we write the coefficient
][„(I.) of (J/kT)" on lattice I. as"

ly as polynomials of these bare-vertex weights.
The primary purpose of this publication is to
present the results for scalar models in a form
which can be used by the reader for any model
within the class and for any of the cubic lattices. "
Full details will be published elsewhere.

In Table I we present the susceptibility series
for all scalar models of the form in Eq. (1). To
explain the use of these results we first define
the bare-vertex weights, I», by

][,(sc) = —,
' [180(I,)'I, + 702 (I,)'+ 6(I,)'].

The zeroth-order coefficient ][,(I.) equals I, for
all lattices, I..

As an example of the use of these series, we
examine the loci of Gaussian tricritical points
for the triple-well continuous-spin model on the
fcc lattice,

w [s]= —[ws'(s'- 1)'+~„s'"]
withn=1, 2, and 3. For this model the vertex
weights are given by

j ds S2le [sw]/f dS ew[s] (7)

(N!)][„(I,) = Q F,"(m„.. . ,m„)g(I„)».
(~2q ~ ~ ~ o m~~) I = 1

For example we can write ][,(sc) as

(4)

By numerically integrating Eq. (7) and using Ta-
ble I we readily obtain the series coefficients for
givenA, n, and h„. In the limit as A-~ withe„
finite this model becomes the Blume-Capel S = 1
model for tricritical phenomena (independent of
n). For the particular value of b, „=—ln2 the mod-
el reduces to the S=1 Ising model. Here 6„
plays the role of a nonordering fie1d in the theory
of tricritical phenomena. +' Analysis of the se-
ries shows that for h„&A„, the system is Ising-
like, i.e. , X diverges like X,/(K, -K) with ]'
= 1.25. As A„-A„, the system crosses over'
from Ising to tricritical behavior; and, exactly
at the tricritical value 6„,of the nonordering
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field, the susceptibility divergence is character-
ized by the Gaussian exponent y=1, i.e. , p-X&/
(K, —K) (to within logarithmic terms'). For b, ,
&6„, the transition is first order. " For finite
A, S'NS'4S', so that the behavior of then=1,
2, and 3 models can be expected to differ. In
fact we shall see that only the n =1 model exhibits
tricritical behavior at smally (the limits= 0

corresponds to the Riedel-Wegner model' ), the n
=2 andn =3 models being Ising-like for all 4„&0
at small enough A.

Herein, we accept the Gaussian nature of the
tricritical point, and use the crossover to y =1
to identify b, „,. As pointed out in Ref. 4, this
provides the most accurate method of finding 4„,
and K, [=K,(b.„,)]. ln Fig. 1&a) we present the

TABLE I. Susceptibility series for scalar model, as described in text.

Sc bcc fcc SC fcc

(2, 0, 0, 0, 0)
(1,1,0, 0, 0)
(3,0, 0, 0, 0)
(2, 1,0, 0, 0)
(4, 0, 0, 0, 0)
( 0, 2, 0, 0, 0)
(0, 1,1,0, 0)
( 1,2, 0, 0, 0 )
(3, 1,0, 0, 0)
(5, 0, 0, 0, 0)
(2, 0, 1,0, 0)
( 1, 1, 1,0, 0 )
(2, 2, 0, 0, 0)
&4, 1,0, 0, 0)
&

e', o', o', o', o)
(0, 3, 0, 0, 0)
(3,0, 1,0, 0)
(0, 0, 2, 0, 0)
( 0, 0, 1, 1,0)
( 1,0, 2, 0, 0 )
( 1, 3, 0, 0, 0 )
(3,2, 0, 0, 0)
( 2, 1, 1,0, 0 )
(5, 1,0, 0, 0)
(7, 0, 0, 0, 0)
(1,1,0, 1,0)
(0, 2, 1,0, 0)
( 3, 0, 0, 1,0 )

( 1,0, 1, 1,0 )
(2, 0, 2, 0, 0)
( 2, 3, 0, 0, 0 )
( 4, 2, 0, 0, 0 )
( 3, 1, 1,0, 0)
(6, 1,0, 0, 0)
( 8, 0, 0, 0, 0 )
&0, 1,2, 0, 0)
(0, 2, 0, 1,0)
(1,2, 1,0, 0)
&5, 0, 1,0, 0)
( 2, 1,0, 1,0)
( 0, 4, 0, 0, 0 )
( 4, 0, 0, 1,0)
( 0, 0, 0, 2, 0 )

(0, 0, 0, 1, 1)
( 1,0, 0, 2, 0 )
( 1, 1,2, 0, 0 )
( 3, 0, 2, 0, 0)
(0, 3, 1,0, 0)
&1,4, 0, 0, 0)
(3, 3, 0, 0, 0)
(5, 2, 0, 0, 0)
(2, 0, 1, 1, 0)
(4, 1, 1,0, 0)
(7, 1,0, 0, 0)
( 9, 0, 0, 0, 0 )
&1, 0, 1,0, 1)
( 2, 2, 1,0, 0 )
&3, 1,0, 1,0)
(6, 0, 1,0, 0)
(0, 1, 1, 1, 0)
(0, 2, 0, 0, 1 )
(1,2, 0, 1,0)
( 0, 0, 3, 0, 0 )
(2, 1,0, 0, 1)
(5, 0, 0, 1,0)
(4, 0, 0, 0, 1 )

6
54

180
702

e

6
414

4662
11772

90

900
22950

127440
248400

0
3600

e.

6
804

37710
1013580

64 140
3931200
6162480

450
128880

1050
18007---
1680

85092
3996720

44963100
3767400

135898560
178230780

0
2100

188160
4415040

50400
43890
T5600

6

6
1314

480816
5668992

293580
8927100

303516360
2069648280

206136
189108360

5174948520
5853118320

840
26412120

3931200
174628440

6300
1050

342090
0

25200
3107160

37800

8
104

336
1992

8

776
13368
48336

168

1680
62760

558240
1464000

0
10080

8

8
1504

109320
4321200

178560
25328880
52430400

840
602640

1960
5040

3136
230832

16813440
295100400

16070880
1274353920
2191185360

0
3920

519680
33183360

141120
151480
352800

8

8
2456

1362368
23816576

980560
41667920

1989657600
20325614400

566720
1291281600

70672704480
1037T6644160

1568
115673600

17424960
1970831520

11760
1960

949480
0

70560
2T684720

176400

12

12
252

936
7452

12

12
2412

61380
285336

396

4920
330300

4113360
13461120

1920
54000

12

12
4992

814140
38494440

1029600
297651240
755917920

1980
5382360

12540
19800

9408
1325352

196857360
426297oeoo

162524880
23643627840
49256038440

27888
12600

5886720
502649280

806400
897540

3855600
12

12
8484

18137280
264316416

11500440
558904920

37158115680
475058213280

3494400
22446012960

2065871772720
3652358441760

3696
1691964960

189675360
47902715280

90888
4620

8663340
36960

277200
507449880

1247400

(1,0, 0, 1, 1,0 )
( 2, 0, 0, 2, 0, 0 )

' (2, 1,2, 0, 0, 0)
( 4, 0, 2, 0, 0, 0 )
(1,3, 1, 0, 0, 0 )

&4, 3, 0, 0, 0, 0)
(6, 2, 0, 0, 0, 0)
(3,0, 1, 1,0., 0)
(5, 1, 1,0, 0, 0)
&8, 1,0, 0, 0, 0)

( 10, 0, 0, 0, 0, 0)
(0, 1,0, 2, 0, 0)
(0,5, 0, 0, 0, 0)
( 0, 1, 1,0, 1, 0 )

(7, 0, 1,0, 0, 0)
( 0, 0, 2, 1,0, 0 )
( 1,0, 3, 0, 0, 0 )

(1,2, 0, 0, 1,0 )
(0, 3, 0, 1,0, 0)
&6, 0, 0, 1,0, 0)
(3, 1,0, 0, 1,0 )
(5, 0, 0, 0, 1,0)
(0, 0, 0, 0, 2, 0)---1
( 0, 0, 0, 0, 1, 1 )

( 1, 1,0, 2, 0, 0 )
&3, 0, 0, 2, 0, 0)
( 0, 1,3, 0, 0, 0 )
( 1,2, 2, 0, 0, 0 )
(3, 1,2, 0, 0, 0)
( 5, 0, 2, 0, 0, 0 )
( 0, 2, 1, 1,0, 0 )
(1,5, 0, 0, 0, 0 )
(3,4, 0, 0, 0, 0)
(2, 3, 1,0, 0, 0 )
& 5, 3, 0, 0, 0, 0 )
( 7, 2, 0, 0, 0, 0 )
( 2, 0, 0, 1, 1, 0 )
(4, 0, 1, 1,0, 0)
(6, 1, 1,0, 0, 0)
( 9, 1,0, 0, 0, 0 )

(10,0, 0, 0, 0, 0 )
( 1,0, 0, 1,0, 1 )
( 2, 1, 1, 1,0, 0 )
(2, 0, 3, 0, 0, 0)
&4, 2, 1,0, 0, 0)
( 1, 3, 0, 1,0, 0 )
( 3, 0, 1,0, 1,0 )
( 5, 1,0, 1,0, 0 )
(8, 0, 1,0, 0, 0)
( 0, 1,0, 1, 1,0 )
(0, 4, 1,0, 0, 0)

( 3, 2, 0, 1,0, 0 )
(2, 2, 0, 0, 1,0 )
(0, 0, 2, 0, 1,0)
( 0, 0, 1,2, 0, 0 )
(2, 0, 1,0, 0, 1)
(4, 1,0, 0, 1,0)
( 7, 0, 0, 1,0, 0 )
(1,0, 2, 1,0', 0)
( 1,2, 0, 0, 0, 1 )
( 0, 3, 0, 0, 1,0 )
( 3, 1,0, 0, 0, 1 )
(6, 0, 0, 0, 1,0)
( 5, 0, 0, 0, 0, 1 )

2700
230526

70425936
352651320
90039600

1354041360
20411591760

101944354680
19613664

9534445200
216899000640
216250443360

0
0

12600
1818936

2388022560
4418oe4o

230519520
7401119040

0
0

151200
1775088
378000

0
115123680

2268000
1360800

e

6
1944

1970730
23264820

3024000
452571840

8032658760
19520948160

4698540
2506442400

143381107800
15636537000

1345723016400
5316170680800

507060
1356558840

503085945600
9932152608000
8825075128800

1350
332942400
55467720

180779256000
156907800

18779040
12670295400

343399240800
14850

95823000
6300

3031560
4338e4e2oo

51710400
13860

0
75600

185749200
5407138800

le89eeo
189000
693000

1134000
48308400

e8o4oo

5040
621576

299113920
2341715040

446019840
8918159040

206833193280
1477552497120

82555200
102238718400

4309745408640
5527262240640

0
0

23520
5021856

15969542400
189332640

1692290880
123195219840

0
0

423360
5916288
1058400

0
1776297600

10584000
12700800

3632
5511960

96989040
10946880

2294916960
54959879520

206630827200
15155280

18295401600
1455184836000

111954124800
20593050811200

113290264483200
1386720

9211839840
8182030752000

286074500241600
325382704214400

2520
1438819200
249994080

1923859828800
771271200

81849600
155281341600

8419005604800
27720

552316800
1 1. 760

8410080
30390519600

22818eooo
25872

0
211680

1499799200
127421683200

4793040
529200

1940400
5292000

1191153600
6350400

15336
3736044

6396866784
44471715120

8154699840
199989246240

6235971507360
54913237893360

921697056
2943054505440

197749196527680
303601312848960

86400
652821120

79632
71605296

379611308160
3119724720

34358476320
4826433003840

215712
24635520

2509920
e626592o

6577200
25280640

59390392320
123832800
310262400

12

12
12888

87483780
1176654600
205541280

547oe85e4oo
1695991515120
6827110647840

354475800
597611498400

'54389454512400
3328520580000

998371268042400
6680663080963200

8912160
195028994160

384686341905600
20614373055309600
27960309337867200

5940
30999235680
9847eelo4o

73917161690400
20733829200

945967680
5446231635600

520997701946400
2%1020

15161025600
27720

88567920
832911244'200

3516420600
257544
624960
831600

32407452000
6864442653600

194108040
2079000

35947800
37422000

49353494400
89812800
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0.9

0.8
dt

0.7

0.6

0.5

0.3

0.2

kTt/12 J

0.1

a.

b.

6„,and K„, are qualitatively identical to the se-
ries predictions. As usual molecular-field the-
ory considerably overestimates T, and unde~esti-
mates L, .

In conclusion, we have presented tenth-order
susceptibility series in powers of 4/kT for all
classical scalar models in the absence of sym-
metry-breaking fields. As an example of the
power of these results we have mapped out the
tricritical behavior of a new class of models
which interpolate between the Blume-Capel' and
Riedel-Wegner' models. We expect that our gen-
era, l results will prove useful in studying new
models for phase transitions.

0.2 04 0.6

(1+A )

0,8

FIG. 1. (a) Loci of tricritical parameters, (b) Tri-
critical temperatures as a function of (1+A.)

analysis of 4„,. as a function of A for al/A. We

plots„, /(1+6, „,) versus 1/(1+A) so as to encom-
pass both the Riedel-Wegner (4. - 0) and Blume-
Capel (A -~, b. finite) limits. All three models
exhibit tricritical loci, b, „,g), which coincide
in the A -~, 6-finite limit. We agree with Saul,
Wortis, snd Stauffer's value for 6, (~) with high
precision. 4

As (1+A) ' increases from zero all three b.„,
loci increase. However, only the n =1 locus ex-
tends all the way to the (A = 0) Riedel-Wegner
limit. For sufficiently small A neither the n =2
nor the n =3 model has a tricritical point. In-
stead the tricritical loci bend back to ~, =~ atA

In Fig. 1(b) we display the loci of tricritical
temperatures as a function of A. Note that the
tricritical temperature decreases to zero for n
=2 and 3 ln theA + limit. Fol n=1
the tricritical point approaches 4, , = 5.06 and

kT, /12 J=0.107+ 0.01 as A -0.
These results may appear hard to understand,

but they are eminently reasonable. In molecular-
field theory the tricritical point is easily found
to be located by the condition that the bare fourth-
order cumulant I4 —3I,' vanish. For sufficiently
small A this can never be satisfied for our n =2
andn=3 models, whereas for anyA it can always
be satisfied for some 4, , for the n =1 model.
Indeed the results of molecular-field theory for
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