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We present high-temperature series through tenth order for the susceptibility of all
classical scalar models with bilinear nearest-neighbor interactions in the absence of
symmetry-breaking fields. As an example of the use of these results we examine the
tricritical behavior of triple-well Landau-Wilson models which interpolate between the
Blume-Capel and Riedel-Wegner models. The general series are given for the fce, bee,

and simple cubic lattices.

We have derived new tenth-order, high-temper-
ature series for the susceptibility tensor x of a
broad class of classical lattice models, and pre-
sent in closed form the series coefficients for the
subclass of models with scalar order parameter
on the three cubic lattices. We believe that these
results represent a breakthrough of fundamental
importance. All previous treatments' have in-
volved numerically deriving the series for a sin-
gle model at a time; and many specialized tech-
niques which have been used to obtain series of
useful length apply only to limited classes of mod-
els (e.g., models for which all articulated dia-
grams and/or diagrams with multiple bonds are
absent from the linked-cluster expansion'). We
know of no prior method which produces series
of comparable length for as broad a class of mod-
els as is encompassed by our method. In addition
to its generality, our method has the advantage
that the linked-cluster expansion is obtained fov-
mally (through tenth order) for all models at
once. Thus we obtain analytical expressions for
the series coefficients for all models of a given
class. The fact that we obtain the series coef-
ficients analytically rather than numerically
makes it particularly easy to study the depen-

dence of critical-point properties on parameters
entering the Hamiltonian, to map out universality
classes, to investigate crossover behavior near
unstable fixed points, and to make direct contact
with the renormalization-group approach to crit-
ical phenomena.?

The models to which our results are applicable

‘include all classical models with Hamiltonians of

the form

x

5T =‘r/;,W[S(¥)]+%;%?%)S(F)-S(LS). @)

Here, S(;) is a scalar, m-component vector, or
nXn tensor variable with discrete or continuous
(but even) domain, J is the exchange energy, the
sums over T and 5 extend over all nearest-neigh-
bor pairs of lattice sites, W is an even function
of the components of S, and S(r) S(r +6) is the_
(most generally, weighted) inner product of S(r)
and S(r+3). There are several familiar cases
to which these results apply, including (i) scalar
models—the spin-S Ising models,® the Blume-
Capel model,* and the one-component Landau-
Wilson continuous-spin models?; and (ii) vector
models—the anisotropic Heisenberg and planar
Heisenberg models® and the m-component Lan-

323



VOLUME 35, NUMBER 6

PHYSICAL REVIEW LETTERS

11 AucusT 1975

dau-Wilson models.? As an example of the use-
fulness and generality of these results, we ana-
lyze below the loci of tricritical points of a par-
ticular class of scalar Landau-Wilson models
which interpolate between the Blume-Capel* and
Riedel-Wegner models.® Less familar applica-
tions of these results also include lattice models
for liquid crystals with tensor order parame-
ters,” and classical phonon models for displacive
and order-disorder structural phase transitions.®

The series for x were obtained by first solving
for the outer-product correlation function, G R)
=(S(r) *S(; +R)), and then using the fluctuation
theorem to obtain the reduced susceptibility ten-
sor x=2,7G [R). To obtain the series for G(R),
we employed the excluded-volume linked-cluster
expansion® in a generalized Stanley-Kaplan recur-
sive form.!° The uniqueness of our treatment
lies in the fact that we do not reperform the ex-
pansion for each new model and lattice, but rath-
er incorporate the particular lattice and class of
models (which are specified by sets of lattice
constants and graph weights, respectively®) with
the previously calculated (through tenth order)
formal structure of the linked-cluster expansion.
Since the lattice constants need only be evaluated
once for a given lattice, we ultimately only need
to specify the set of graph weights appropriate to
a given class of models.

For models with a scalar order parameter, a
further significant simplification obtains. Name-
ly, the weight associated with any graph is ob-
tained as a finite sum of finite products of “bare-
vertex weights.” This enables us—for each lat-
tice—to obtain the series coefficients analytical-

(N!)XN(L)={ E

Moyesssmyg

For example we can write x;(sc) as
Xs(sc)=2[180(1,)21,+T02(I,)*+6(1,)]. (5)

The zeroth-order coefficient x,(L) equals I, for
all lattices, L.

As an example of the use of these series, we
examine the loci of Gaussian tricritical points
for the triple-well continuous-spin model on the
fcc lattice,

W(S]=-[AS?(S?~1)2+A, S?"] )

withn=1, 2, and 3. For this model the vertex
weights are given by

I, = [.2dSs%eVs1 /[ 2ds eV s, (1)
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ly as polynomials of these bare-vertex weights.
The primary purpose of this publication is to
present the results for scalar models in a form
which can be used by the reader for any model
within the class and for any of the cubic lattices.!!
Full details will be published elsewhere.

In Table I we present the susceptibility series
for all scalar models of the form in Eq. (1). To
explain the use of these results we first define
the bare-vertex weights, I,,, by

I, =Tr(S%e"S))/TrE"5]). (2)

Thus I,, is the average of the 2/th power of S with
respect to the potential well W[S]. Here the
trace operation indicates the sum (or integral)
over the domain of definition of S. We can now
discuss Table I. The results are tabulated in
each order for all three lattices at once. That
is, the order 1,2,...,10 is specified, followed
by a table of data describing the coefficient of
that order for the three lattices. The numbers
(my,my,mg,mg,m,,,m,;,) in parentheses at the
start of each line represent a product of vertex
weights:

6
(mz,m4,m6,m8,mlo,m12)*‘ll'1(121)"'21. 3)
=1

(Through eighth order, only m,,... ,m,, are list-
ed since m,=0.) The three numbers following
(m,,... ,my,) in a given line are the factors mul-
tiplying that particular product in Nth order for
the simple cubic (sc), bece, and fcc lattices, re-
spectively. If we denote such a factor as F, ¥ (m,,
. ,Mm,), where N is the order and L (=sc, bec,
and fcc) is the lattice, we write the coefficient
Xy (L) of J/RT)¥ on lattice L as'?

(4)

By numerically integrating Eq. (7) and using Ta-
ble I we readily obtain the series coefficients for
given A, n, and A . In the limit as A -~ withA,
finite this model becomes the Blume-Capel S=1
model for tricritical phenomena® (independent of
n). For the particular value of A,=—1n2 the mod-
el reduces to the S=1 Ising model. Here A,
plays the role of a nonordering field in the theory
of tricritical phenomena.*® Analysis of the se-
ries shows that for A, <A, , the system is Ising-
like, i.e., x diverges like x,/(K,—K)Y withy
=1.25. AsA,—~A, , the system crosses over®
from Ising to tricritical behavior; and, exactly
at the tricritical value A, , of the nonordering
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3 models being Ising-like for all A, >0
SC

K A, ,)]. In Fig. 1(a) we present the

Herein, we accept the Gauss

tricritical point, and use the crossover to y

2 andn

at small enough A.
provides the most accurate method of finding A,

corresponds to the Riedel-Wegner model®), the n
to identify A, ,. As pointed out in Ref. 4, this
and K, [

=1’

1, i.e., X~Xt/
fcc

(K, —K) (to within logarithmic terms®). For A,
1 model exhibits
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tricritical behavior at small A (the limitA=0

ian exponent y
bcc

SC

TABLE I. Susceptibility series for scalar model, as described in text.

d by the Gauss

>A, , the transition is first order.*® For finite

A, S?#S5%*# 5% so that the behavior of the n
2, and 3 models can be expected to differ. In

field, the susceptibility divergence is character-
fact we shall see that only the n
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FIG. 1. (a) Loci of tricritical parameters, (b) Tri-
critical temperatures as a function of (1+ 4)~ L.

analysis of A, ;, as a function of A for allA. We
plota, ,/(1+a, ;) versus 1/(1+A) so as to encom-
pass both the Riedel-Wegner (4 - 0) and Blume-
Capel (A -=, A finite) limits. All three models
exhibit tricritical loci, A, ,(4), which coincide

in the A =, A-finite limit. We agree with Saul,
Wortis, and Stauffer’s value for A, (o) with high
precision.*

As (1+A)™! increases from zero all three A, ,
loci increase. However, only the »=1 locus ex-
tends all the way to the (A =0) Riedel-Wegner
limit. For sufficiently small A neither the n=2
nor the » =3 model has a tricritical point. In-
stead the tricritical loci bend back to A, =x at A
=, In Fig. 1(b) we display the loci of tricritical
temperatures as a function of A. Note that the
tricritical temperature decreases to zero for »
=2 and 3 in the A+, A ,—~olimit. Forn=1
the tricritical point approaches A, ~5.06 and
kT,/12J ~0.107+0.01 as A - 0.

These results may appear hard to understand,
but they are eminently reasonable. In molecular-
field theory the tricritical point is easily found
to be located by the condition that the bare fourth-
order cumulant J, - 31, vanish., For sufficiently
small A this can never be satisfied for our n =2
and 7 = 3 models, whereas for any A it can always
be satisfied for some A, for the » =1 model.
Indeed the results of molecular-field theory for
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A, ;and K, , are qualitatively identical to the se-
ries predictions. As usual molecular-field the-
ory considerably overestimates T, and underesti-
mates A,.

In conclusion, we have presented tenth-order
susceptibility series in powers of J/kT for all
classical scalar models in the absence of sym-
metry-breaking fields. As an example of the
power of these results we have mapped out the
tricritical behavior of a new class of models
which interpolate between the Blume-Capel* and
Riedel-Wegner® models. We expect that our gen-
eral results will prove useful in studying new
models for phase transitions.
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276 apply the table to the site-randomized problem,
simply replace I, wherever it appears by Iz,<p2’>,
where {+°°) represents an average over the single-site
random distribution,



