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An integration of (9) gives

4 "+4"—4'A'+2r (O' —A')+r '(1 —e' )+—'g es =0, (10)

where B, is the constant scalar curvature. Both (8) and (10) are second order in A and C '; hence the
general solution of (8) and (10) has four arbitrary parameters. (Because of nonlinearity there might
be a discrete number of such sets of four parameters. ) The additive constant in 4 can be removed by
a change of time scale. Therefore the general static spherical-symmetric solution has four arbitrary
parameters. This demonstrates that the solution of (1) is much richer than that of (2) (two parame-
ters) or (3) (one parameter). As a matter of fact

ds' = —dt'+ (1+e,/r +e,r') 'dr'+ r'(do'+ sin'() dy')

is a solution of (1) but not of (2) or (3); (11) possesses no gravitational red shifts. ' The problems of
boundary conditions and sources for (1) deserve extensive studies to clear up this richness of solu-
tions. In view of the present success of the renormalization of gauge theories, these studies could
contribute to the solution of the long-standing problems of quantum gravity.
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I solve, in principle, the Kilmister- Yang equations for the degenerate cases of con-
formal flatness and decomposability of space-time. The unphysical metrics discussed
by Pavelle belong to these degenerate classes. Perhaps using the methods outlined here
it will be possible to determine if these "unphysical" metrics are isolated examples or
if they are typical of such "geometric-degenerate" classes.

In a recent paper Pavelle' has discussed cer-
tain solutions of the Kilmister-Yang (KY) equa-
tions" and has argued that in particular confor-
mally flat solutions to these equations should not
be allowable in the theory. Of course conformal-
ly flat solutions of the Einstein vacuum equations
are necessarily flat and hence no additional con-
straint of this type is necessary there. Further-
more another unphysical solution discussed by
Pavelle is also degenerate in the sense that it
possesses a timelike parallel vector field and

hence is decomposable. In fact almost all the
solutions exhibited recently"" possess some de-
generate "geometric" property which is ruled out
by the field equations in the orthodox theory (i.e.,
the only solutions with such properties are neces-
sarily flat).

I present here some general theorems on con-
formally flat and decomposable spaces which
should enable the construction of many solutions
to the KY equations and hence a fuller discus-
sion of the unphysical nature of the types of solu-
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tion discussed by Pavelle. We consider the local
differential geometry of an n-dimensional Rie-
mannian space V„with metric g„. (For a V, we
assume of course the Lorentz signature but the
results of the next bvo sections are true in gen-
eral. ) By a KY space we will mean a V„which
satisfies (locally)

Rq~q. ~' = 2R~(~.q j =0.

Conformally flat KY spaces.—Theorem 1: A

V, is a KY space if and only if it is conformally
flat with constant scalar curvature.

Theorem 2: For n ~ 4, every conformally flat
V„with constant scalar curvature is a KY space.

The metric of every V, can (locally) be ex-
press~ ~ (modulo signature)

ds =fe'~[(dx')'+ (dx')'] e =+ 1 (2)

with o =a(x', x'). Hence in two dimensions we
have Theorem 3: A V, is a KY space if and only
if it has constant scalar curvature, and conse-
quently is a space of constant curvature.

Decomposable KY' spaces. —A space V is said
to be n by m —n decomposable as the direct prod-
uct V„~V~ „ if and only if there exists a coordi-
nate system x', .. . ,x",x" ', ... ,x such that the
metric of V assumes the form

ds2 =g,~dx'dx~ g~sdx "Cxs+g~dx"dxs, (3)

where Greek letters take the values 1,2, . .. ,n,
and Latin capitals the values n+1, ... ,m, and
where g„s=g„s(x"),g~ =g~(x ). If one of the
components (e.g. , V „) in the direct product V„
XV „ is flat, then V is called a flat extension
of aV„.

The following are easily verifiable:
Theorem 4: Every flat extension of a KY space

is a KY space.
Theorem 5: The direct product of two KY spac-

es is a KY space.
Theorem 6: If V„' and V„' are Einstein spac-

es [R„~g„]with scalar curvatures R '~ and R ',
respectively, then their direct product is an (n

+r)-dimensional KY space. In particular it is an
Einstein space if and only if R"'/r =R~ "/n.

Theorem 7: If a four-dimensional KY space is
decomposable then it is one of the following types:
(i) It is the direct product of two two-dimensional
spaces of constant curvature and is not flat;
(ii) it is the flat extension of a conformally flat
V, with constant scalar curvature and is not flat;
or (iii) it is flat. We note that types (i) and (ii)
do not exist for the orthodox Einstein vacuum
equations.

ds' =dt' p4—(b.,dx'dx'), (4)

is a KY space iff p satisfies the differential equa-
tion

v'p+-', Rp' =0, (5)

where R is a constant and V' denotes the three-
dimensional Laplacian.

If we assume the usual spherical polar coordi-
nates (r, B,y) and p =p(r), Eg. (5) becomes

1 d. ,dp Rr' —+—p' =0r' dr dk 8 (6)

A singular solution of (6) is given by P = (2/R)'"
xr '" from which results the metric

Cs'=Ct' -2R 'r '(Cr'+r'CB'+r'sin Bdy )

Under the change of variables p(r) -=. (-',R) '
x exp(~~q)v(q), q = —lnr, Eg. (6) is

C v/Cq —4v +v =Oq

which has a first integral

(dr/dq)' =-,'v'-3 v'+C, .
With C, -=0 the above integrates to give

v'= &~3sech(q+C, ),
which in the original variables yields

p2 —(&R) &~2~1fp(~2+r2) & ~ =expC

and results in a line element isometric to

(6a)

ds' =dt' —(I +r'/4k') '(Cr'+r'dB'+r2 sin'8 dp ).

Under the transformation p =r(1+r'/4k2) ', this
becomes

ds' =dt' —(1 —p'/P') 'dp'- p'dB'- p' sin'8 dy'

the line element of the Einstein Universe.
For R =-0, the solution of (6) is given by P =u

+P/r which results in a flat metric if either n or
P is zero. Otherwise the line element is isomet-
ric with

ds' =dt' —(1 +m/r)'(dr'+r'dB'+r' sin'8 dy'),

Particular solutions. —Applying the above theo-
rems we are able to construct several classes of
solutions to the field equations (1).

(a) The conformally flat V, with metric

ds '= —p~(b„dx'dx~), a, b =1,2, 3

(and signature —3), has a scalar curvature

R =-8P '6"P„~.

Consequently the decomposable V~,
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2p j. gp3

Here R is the constant scalar curvature of the
V4 with line element

ds' =p2[dt2 —(dx )2 —(dx ) —(dx ) ]

(7)

and ' is the four-dimensional D'Alembertian
operator. Hence in the special case R =- 0, the
conformally flat KY spaces are determined by
solutions of the wave equation.

With spatial spherical polar coordinates (r, e,
y) and the assumption that p ~p(r), Eq. (7) be-
comes

1 d 2dp R——r' +—p'=—0,x' dx &' 6
(7a)

which for R =—0 has the general solution

p =n+p/r
(n and p constants). For u IO this gives a solu-
tion isometric with

ds'=(1-I/r)'(dt' —dr' —r'de —r sin ed' )

which is the second unphysical solution discussed
by Pavelle

(c) Finally in the 2&& 2 decomposable case we
note that, if ds' = ds ' +ds ' ', coordinate sys-
tems exist such that

ds ' 2=e ~[(dx )2 —(dx')2],

d5, (2)2 e2 e[(dx 2)2 y (dx 3)2]

and their respective scalar curvatures A~') and
Z"' satisfy

g« —(»+2K e =0,(&)

0»+0»+~R e =0.(2& 2e

and under the transformation p =(r+m)'/r is

ds'=dt' —(1+4m/p) 'dp' —p'de' —p'sin'ed''.

This is therefore an unphysical' metric [Eq. (4)]
discussed by Pavelle. '

By similar specialization in Egs. (4) and (5),
static solutions with cylindrical and axial symme-
try (for example) can be generated.

(b) The class of conformally flat solutions of
the KY equations is determined by solutions of
the differential equation

For R ' and R constant, the general solutions
of these equations are, respectively,

'=1--'&"'[( ')'-( ')'],
e = 1+gA ' [(x')'+ (x')']

The only space-time of the above type satisfying
8,&

=0 is of course flat space-time, and, as noted
in theorem 6, Eq. (9) determines an Einstein
space if and only Q' P~ ) =Q 2 . For g~ ~+&~ ~ p 0
the resulting space-times have a type-D Acyl
tensor, and forA ' +8 ' =0 they are conformally
flat. An example of this latter type is given by
the V, with line element (A. a constant)

dsa = g'-(x')'(dx )'+ 2 dx dx' —(dx')'

—cos'(Xx')(dx')' . (10)

Here B ' = ~ and B ' = —~. The conformal flat-
ness of this metric may be illustrated by the
transformation

Xx'=(t r, r -', —
m —8, y),

under which (10) becomes

ds2=X" 2r (dt —dr -r de —r sin2edy ).
It could thus also have been obtained from (8) by
choosing the constant e =0.

This metric was first discovered by Robinson'
and in the orthodox theory represents a spheri-
cally symmetric solution to the combined gravita-
tional and electromagnetic field equations for
empty space,

&a +P 0'co+*1 *9'co=0 ~

ab ~ +ah

where y, & is the electromagnetic field and *y,&

is its dual.
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