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A model based on noninteracting droplet fluctuations is used to describe the phase dia-
gram for electron-hole liquid condensation in semiconductors. All liquid and gas den-
sities are related to the liquid density at low T. Good agreement is obtained by fitting
recent detailed measurements of the phase diagram for Ge, and an experimental esti-
mate of droplet surface tension (-l,ox 10 erg/cm2) is obtained. Theoretical values of
the critical temperature and density for Ge are given. A theoretical phase diagram for.
Si is presented.

The condensation of high-density nonequilibrium
carriers into electron-hole-liquid (EEL) droplets
in Ge and Si at low temperatures has been studied
extensively both experimentally' ' and theoreti-
cally. " The liquid-gas phase diagram provides
an especially full picture of the condensation (see
Fig. 1): It is the boundary (in density-tempera-
ture) separating a "gas" of excitons, electrons,
and holes from the high-density "metallic-liquid"
phase and a coexistence region (characterized by
droplets of EHL). The most detailed experimen-
tal studies have been made for Ge. Thomas et al.'
have recently measured the entire phase diagram
for Ge, especially the region near the critical
temperature, T,. Their results are given in
Fig. 1.
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FIG. 1. Phase diagram in temperature and density of
electrons and holes in Ge. The experimental points are
from Ref. 6; the solid curve is obtained from the drop-
let model using parameters given in text; p, gives
the temperature dependence of the liquid density due to
single-particle excitations, and is obtained from the
experimental results.
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In this Letter we present a model of the con-
densation based on a picture of EHL droplet fluc-
tuations in the gas and use it to give the first de-
tailed account of the experimental measurements
of the phase diagram for Ge for T ~ pT, . It re-
lates the shape of the phase diagram in this re-
gion to the surface properties of the liquid, and
an estimate of the droplet surface tension is ob-
tained from the data. Using theoretical parame-
ters, it gives a complete phase curve for Si for
which detailed measurements have not been
made.

The shape of both sides of the phase diagram
is reasonably well understood for T ~ ~T„but
less well understood for higher T (which spans
two decades in density for Ge). With reference
to the case for Ge, on the gas side for T S4 K

(p~ ~,„&2 && 10"cm '), the exponential depen-
dence of density on T is understood by thermal
equilibrium between a low-density, classical gas
and the liquid phase-. ' On the liquid side for T
& 4 K, the T' dependence of density [p~ ~,„=(2.1-
2.4) & 10" cm '] can be understood with a simple
picture of a noninteracting degenerate Fermi

!
system. ' For T & 4 K these simple descriptions

fail as can be seen in the flattening of the top of
the phase diagram.

Previous attempts to treat the higher-T region
include (i) the exact solution of a model with only
Hartree-Fock interactions between particles, '
and (ii) treating the system in the immediate vi-
cinity of T, as a dense plasma. " The interac-
tions in this system are significantly more com-
plex than those in the first approach. The sec-
ond approach is useful in estimating T„but it
cannot be used to describe either the liquid or
gas curve away from T, (for T 2 zT, ) because to
do so requires a knowledge of the chemical po-
tential as a function of density in both phases and
the use of a Maxwell construction between them;
the plasma model does not adequately describe
the chemical potential in the low-density part of
this region (see Rice' ).

To describe the liquid-gas phase diagram, we
propose a simple, physically clear model which
is an extension of a droplet fluctuation model dis-
cussed by Fisher' and others in the theory of
phase transitions. Following his approach, we
write the density of the gas phase as a sum of
noninteracting droplet fluctuations of EHL at con-
stant chemical pote.ntial p, and T:

pa =e.Z em$- [FB~+Fs~~ +~'gT~In(~) p, ~]/~pT) .
n=Z

Here the free energy of a droplet of n electron-hole pairs is separated into a bulk term F~n, a sur-
face term E~an', where an' is the droplet surface area, and a higher-order term in In(n); q, is an
overall proportionality constant.

In this model the gas phase contains dropletlike fluctuations of liquid, and condensation is indicated
by the onset of a stable liquid phase (see Ref. 10). For p, &E~ the probability of very large droplet fluc-
tuations diverges, and for p, &E~ it does not; thus p(T) = E& gives the condensation point at a given T.
Further, the number and size of the fluctuations is controlled by the surface tension of the liquid drop-
lets Eq(T). As T approaches T„Ez(T) decreases, and fluctuations increase. Finally at a tempera-
ture for which F~(T) vanishes, stable droplet formation is no longer possible; thus the condition F~(T
=T,') = 0 determines T,.

In a manner similar to (1), we describe the liquid phase as dense EHL containing noninteracting bub-
ble fluctuations. On the coexistence curve (p. =E&), the liquid density is written

pz, ,„=p, p (T ) —q, Q exp(- [F,a~'+ k, Tv ln(n)]/k, T) . (2)

Here p, z (T) gives the density variation of the
electron-hole Fermi system due to single-parti-
cle excitations, and the second term gives the
variation due to bubbles.

Complete symmetry between droplet and bubble
fluctuations has been assumed. It then follows
from (1) and (2) that

Equations (1) and (2) give the liquid-gas phase
diagram in terms of p, ~ (T) and F&(T) which are
properties of the liquid alone. For T ~T„ the
liquid is a degenerate Fermi system (T «T F, TF
equals 45 K for holes and 29 K for electrons in
Ge), and its properties can be expanded as"

pa ., (T)+p~, ..., (T)=p, , (T),

p. =-'p, , (T.).
(Sa)

(sb)

p, .p. (T) —=p(o) (1 —&,T'),

F~(T) = E~(0) (1 —5~T') . —
(4a)
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First we consider the phase diagram for Ge
using theoretical values of p, z (T) and F~(T).
p(0) and &~ have. been calculated by several
groups, ' ' and their results are in good agree-
ment with measurements of the low-T liquid side
of the phase diagram where bubble fluctuations
are negligible. The present authors have devel-
oped a method for calculating EB (T) based on the
energy-density functional method. " For Ge we
obtain"

F (T) = [(2.70 K)/a ][1—(T/5. 0)'] . (5)

This yields T, = 5 K. Using this T, in (3b) with
the theoretical values p(0) = 2.2 && 10"cm ' and

5& =0.0092 K from Ref. 5 gives p, =0.845&&10

cm '. These values of p, and T, compare favor-
ably with the measurements of Thomas et al.'
who give p, = (0.8+ 0.2) x 10" cm ' and T, = 6.5 K.
We note further that this theoretical p, z (T) sat-
isfies (3b) for the sum pa, ~„(T)+pl. ,~„(T) from
experiment (Fig. 1) to within 5% over the whole
phase diagram.

The shape of the phase diagram is now dis-
cussed. For T &2T„(1)and (2) reduce to the
simpler descriptions discussed above, so we will
be concerned primarily with T ~ gT, . To make
the most direct comparison with experiment, p(0)
and 6~ are chosen from the experimental pL, ~„
for T «T, (p, z in Fig. 1): p(0) =2.38&&10" cm ',

=0.0072 K '. Also, the experimental value'
T,(= 6z'") = 6.5 K is chosen. From geometry, a
=4m[3/4mp(0)]'"=4. 5aB', & =-', (for spherical
droplets), and 7'=2.2"; then q, = p, /f(r), with K

the Riemann zeta function. Then only E~(0) is un-
specified; the solid curve in Fig. 1 is obtained by
choosing E& (0) = (2.4 K)/a~' to give a good overall
fit. The agreement with experiment is very good
on both sides. This value of Ez(0) (1.0&&10 ' erg/
cm') provides an experimental estimate of drop-
let surface energy; it falls within the range of
theoretical estimates~' [(1.9-4.2 K)/a~'] and is in
reasonably good agreement with experimental es-
timates, (3.9 K)/a~'" and (2.9 K)/a~'" from su-
persaturation measurements.

The interpretation of F~(0) as the surface en-
ergy should be taken somewhat cautiously. Ex-
cept quite close to T„(1)and'(2) are dominated
by relatively small droplets (bubbles). For ex-
ample, for T = 5.5 and 6.4 K, n&15 and n &35,
respectively, contribute &15%%uo of the sums. For
small droplets the separation of the free energy
into surface and bulk terms is somewhat arbi-
trary. A more accurate value of the surface en-
ergy could be obtained by fitting within a few

tenths of a degree of T„but experimental results
there are not yet sufficiently accurate. Nonethe-
less the good overall fit to experiment (Fig. 1)
indicates that this Ez(0) provides a useful exper-
imental estimate of the surface energy. It should
be carefully noted that the droplets in (1) and (2)
are fluctuations and are not the much larger equi-
librium liquid-phase drops seen in the two-phase
region.
. The sums in (1) and (2) include only neutral

fluctuations. Charged fluctuations (with unequal
numbers of electrons and holes) also make a con-
tribution, but it is small (less than 12'%%uo of the
sums up to 0.1 K of T,) because of their electro-
static self-energy. Charged fluctuations have
been included by modifying (1) and (2), to account
for the droplet electrostatic self-energy"; the
best fit to experiment is then obtained by choos-
ing E~(0) = (2.5 K)/a~'. This fit is slightly better
than that in Fig. 1 by up to 5%.

We have described the gas phase of the system
as a gas of electrons and holes plus droplet fluc-
tuations of dense EHL. At very low density and
temperature, however, the gas consists primari-
ly of bound excitons plus droplet fluctuations. Es-
timates. of the density at which this transforma-
tion of electron-hole gas to excitons occurs sug-
gest that it is below T = 4 K on the condensation
curve"', therefore, the description of the gas
phase used here is considered appropriate for
the higher-temperature region which we have
treated.

No detailed measurements of the phase dia-
gram are presently available for Si. Calculations
of p, z (T) at low T give p, z (T) =3.20&&10'8(1
-0.00074T') cm '.' We have performed a calcu-
lation of E&(T) for Si similar to that for Ge yield-
ing F&(T) = (5.20 K)(1 —0 002 14T. 2)/aB~. Using
the droplet model, these values give T, =21.6
K and p, =1.04&&10" cm which are in good
agreement with theoretical estimates based on
quite different models. " The phase diagram
with these parameters is given in Fig. 2. De-
tailed measurements of the phase diagram for
Si would be very interesting.

The droplet model provides an alternative to
the plasma approach" as a method of obtaining
the critical parameters p, and 7.', from first-
principles calculations. These approaches em-
ploy two different approximate treatments of the
system at its critical point: In the plasma ap-
proach, "the chemical potential of the system is
calculated neglecting density fluctuations (by us-
ing an entropy appropriate to a noninteracting
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FIG. 2. Droplet-model phase diagram for Si using
theoretical parameters.
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Brown University Materials Research LaboJatory fund-

system); in the droplet model, on the other hand,
the fluctuations are included in an approximate
way. The nature of the approximations involved
in the two cases is different, and the accuracy of
each approach is difficult to estimate; thus it
does not appear that one can distinguish a priori
which approach provides the best method to cal-
culate p, and T,. It should be emphasized, how-
ever, that the droplet model provides a unified
treatment of the entire phase curve, which is not
done by the plasma approach.

In summary, the droplet model of EHL conden-
sation proposed here provides a simple, physi-
cally clear picture of the condensation. It relates
the shape of %e phase diagram to the surface
properties of the liquid, and it provides the first
detailed description of the phase curve for 7.'
~ ~T„which is in good agreement with measure-
ments for Ge. By using theoretical parameters,
the phase diagram for Si, which has not yet been
measured in detail, has been constructed.

We thank the authors of Ref. 15 for sending to
us a copy of their work.
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We show that the one-dimensional Luttinger model generalized to include spin and back-
ward scattering is equivalent to a two-dimensional Coulomb gas. Scaling equations are
derived and correlation functions are given simple physical interpretationin terms of the
Coulomb gas; e.g. , existence of an energy gap can be understood in terms of Debye
screening. We conclude that an energy gap exists for U~~ & )UJ so that triplet excitations
are nondivergent, and we provide physical arguments to support the exponents proposed
by Luther and Emery for singlet excitations for general coupling constant.

There has been considerable recent interest in an extension of the Luttinger model' to include spin
as well as scattering from +kF to —kF. The Hamiltonian is written as H =II&+HI. , where Hs is the
usual Luttinger-model Hamiltonian

IIs =&FZ k(&a; &a;-ba, s ba,.)+2L 'Z ~pg(k)pa(-k), (&)
k,s

with a~, (b„,) describing spin-s fermions with momentum k (-k), and p, (k) and p, (k) density operators,

p, (k) =2 '"Q a,+, , a„, p, (k) =2 '"Q bt, +I, , bt„.
p,s &,s

The large-momentum-transfer terms are described by

II =P fdx4'„t(x)4'„.t(x)4„.(x)+„(x)(U &, , +U b, ,),
S,S

(2)

where 4„(x)=L '"p& exp(ikx)a„, and 4„(x)=L '"p, exp(ikx)b, , Luther and Emery (LE) have point-
ed out the similarity of this problem to the Kondo problem and have produced an exact solution of this
model for a particular coupling constant U~~(2wv~) '= —-', . They found an energy gap in the spin de-
grees of freedom and calculated exponents for the charge-density-wave response Xz and singlet pair-
ing response I'&. Their result on the spin-density-wave response X& and triplet pairing response P~
was found to be in error by one of us' who concluded that these triplet excitations are in fact nondi-
vergent. This result is consistent with an exponentially activated uniform magnetic susceptibility X,.
LE also argued on the basis of scaling that the gap exists for all U~~ &0 and suggested exponents for
arbitrary coupling constants. In this work we further exploit the similarity to the Kondo problem and

show for general U~ and U
t~

that the interacting-fermion problem at T =0 is equivalent to a two-dimen-
sional Coulomb gas at finite temperature. This problem has been studied in connection with the theory
of melting in two dimensions as well as the two-dimensional X-7 model. ' On the basis of this equiv-


