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We have derived an equation for the g-ray angular distribution including Coulomb cor-
rections, radiative corrections, induced effect, and higher-order nuclear matrices.
With this equation and the experimental data on g-ray asymmetries in polarized *B and
2N, we conclude that the strength of the second-class induced tensor is fp/fy=- (0.96
£0.35) X 1072 in the limit of the impulse approximation. A possible modification of this
value due to mesonic corrections is discussed.

Since Weinberg proposed a measurement of the
ft-value ratio in mirror B decays to test a possi-
ble existence of the second-class currents in
weak interactions,® there have been a number of
articles published on this subject. Among those,
Wilkinson and his co-workers have made an ex-
tensive search for the asymmetries of the ft val-
ues experimentally.? The results were original-
ly thought to be a direct indication for the induced
tensor interaction. Later on, these were, how-
ever, recognized as the sum of the effects due to
nuclear structure, the induced tensor term f,

[ see Eq. (4)], and possible meson-exchange cur-
rents. In a model calculation,® Kubodera, De-
lorme, and Rho adopted the meson-exchange ef-
fect due to w— mev, and they gave a ratio

(ft)+/(.ﬂ)- -1 =6exp =065cc + Opnyar
Here
Ogcc=— 4(7\/fA)J+ (2/3fA)()\L -20)NE, +E0+)

and 0., represents the nuclear-structure effect.
The effect of the second-class current, 6., is
also dependent on the nuclear model through J
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and L, while A is a combination of the strong-
coupling constants including the w-p mixing pa-
rameter, and ¢ is nearly equal to f,. Wilkinson
made an analysis of 6., in the region of mass
number A =8-30 systematically, using available
nuclear models, He obtained as limits for the
parameters?

| £] <2.5%107% MeV™ " and | x| <10x10°%,

Here the combination { =X =0 is not necessarily
excluded, while the theory does not give us a sin-
gle value of A, since it contains a logarithmic di-
vergence,

Less ambiguous information for the second-
class current can be obtained from the measure-
ment of the 8-ray asymmetries in polarized nu-
clei. A long-awaited experiment on 2B and >N
was recently performed successfully by Sugimoto,
Tanihata, and G8ring.* In order to derive a con-
clusion about G-parity nonconservation from this
experiment, we have to be careful to include all
induced effects, higher-order corrections, etc.,
in the equation for the angular distribution of 3
rays.®”® In particular, the radiative corrections



VoLuME 35, NUMBER 1

PHYSICAL REVIEW LETTERS

7 JuLy 1975

are important, at least for the p-ray spectrum, ®
and the Coulomb corrections are nonnegligible
for the electron waves, especially with j= 3.5
Since we found several features insufficient for
our purpose, first we state the method for deter-
mining the equation correctly, and next, we find
the strength of G-parity nonconservation. Final-
ly, we make a comment on possible modification
due to meson-exchange effects, since our equa-
tion is based on the impulse approximation.

The higher-order corrections including Cou-
lomb corrections are given in extended form by
one of the present authors whose equations® in-
clude no induced tensor coupling. The effect of
this G-parity-nonconserving second-class cur-
rent is, however, easily taken into account by
replacing in the published equations® the factors
[in terms of Eq. (4) below]

C,u[Gby (fa=Eofy) [T and

where C, =f,,(0) and C,=f,(0). We also adopt the
nonrelativistic approximation for nuclear matrix
elements:

JaxF=xl(t+p,-un,)/Ml [5G, -
2

i fyT==y1/2M)[5.
Here 1+u,-1,=4.7, and M is the nucleon mass.

The parameters x and y are nuclear-model de-
pendent, and they are given by

x=1+(1/4.1([Txp)/( [,
y=1+i2¢c| [TE-D]/([D. 3)

Here c is 1 for f, and O for f,. The reason for
no nucleon-recoil term for f, is seen in Eq. (7)
below. In the case of *B and ’N, we have x~1,%°

Cali [ vsF) by (f4+2Mf)G [ v:D), (1) [ and y~1.5 for c=1,"!
We adopt the interaction Hamiltonian density
H ={$ﬁ[ Yallfy =fa¥s) + 0\, u(fW +fT7’5) +ik x(fs +fp')’5)] 2/),.} [ Je 7x(1 + ')’5)711)1;] /V2 +H.c. ’ 4

with k=k,~k, and o,, =[ Y y,,] /2i. The coupling constants for 8 decay are

f(0)=(3.001+0.002)x 10" 7% /m?3c ,

Fa(0)==(1.239+0.011)7,(0),

Sw==(ty= 1) y/2M==3.7f,/2M, f5 =0,
from conservation of vector current,‘

szfA/251

(5a)

(5b)

from partial conservation of axial-vector current. The induced tensor term, f,, introduced by Wein-
berg' is now being revealed. Equation (1) can be derived by comparing the space and time components

of 4 and f, in Eq. (4),

(Fa=Eofn)®, T 50,) [0, 76 +95)0,] and = [, ,Tvsd,) +if 2, 7vs8,) Bl 8, T X +7.)9,], (6)

where p is the differential operator, and adopting the nonrelativistic approximation with two-compo-

nent spinor «,
W@ Y5 9,) == (M [, "u,) P +2(, "5 - pu,)]

i@, Vs, == (" Gu,) - p=~2M@, .3,

(M

(8

Equation (8) is useful for deriving rule (1), by neglecting the nucleon recoil. In practice, a correction

in Eq. (3) should be considered.

The explicit form of angular distribution of 8 rays in polarized nuclei is very lengthy; one must take
into account Coulomb corrections, higher-order nuclear matrices of momentum type as well as co-
ordinate type, radiative corrections,'? and f, terms simultaneously. These can be obtained from Ref.
5 by the replacements (1) and (2). To save space, we only give an expression for the 1"~ 0* transition
by omitting the contributions of [G»* and [(6+T)T (the finite de Broglie wavelength effect is, however,
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included in the main L, and A, terms®):
W(o) =7 al?l [ o {[172Bo(f /7 D1+ F(EB, BN [$(1+9)F L VR?E % (2/3E)VR? - (*/3)R?]
FialE,-2E +(1/E)F (20 [E,- (1/E)=3V]}
FPp/EV{[172E(f/f DI[1+GE,EN] [3(1+1)F R VRZE - (p2/3)R?]
¥Zal2E,-5EF6V]+2b[E,-E£3V]Fa'VR[p+4/p)]} cosh
+A{Z (a-b)[E - (1/E)]¥ a'VRp}3(3 cosze—l)). (9)
with
y=(1-022>)"?, V=aZ/2R,
P=qg,-a.,,
A=1-3a,,
(10

a=xRe(ngW*)/]fA|2, ngfw"(fv/ZM)’
b=Re(fagr™)/|fal?, gr=frxy(fa/2M),
a'=Im(ngw*)/|fAl2-

Here F and G are radiative corrections,'? and V is half of the Coulomb energy at the nuclear surface.

b, E, and E, are the momentum, energy, and maximum energy of the electron, respectively. The up-
per sign refers to the electron, and the lower sign refers to the positron. The angle ¢ is the direction
of the electron emission with respect to the nuclear polarization axis; p is the nuclear polarization and

A is the nuclear alignment. The g;’s are the magnetic substate densities (37 ;a,=1). The units 7% =m,
=c=1 are adopted. Assuming small real values for a and b, we can rewrite Eq. (9) as

W(6) =const[1+F(E, E,)][1% 2 aE]

x{1¥P(p/EY1+2(a-b)E] cosf+AZ(a-bE$(3cos?0~1)}.

(1n

Here the energy-dependent radiative corrections'? F(E, E,) and the V and E, terms are factorized in

the first line, while the minor terms, 1/E, aZ/E, and R?, are simply omitted. It is noticed here that

the factorization of the electromagnetic interactions in Eq. (11) is by no means self-evident without

calculations. In fact, this is not the case, if [(G+1)r and [Gr® are explicitly taken into consideration,®
Experimentally, the asymmetry of the B-ray angular distribution is given in a form

@ =[ W(0) - W(m)] /L W(0) + W(m)] = P(p/E)[1+ 0, (1 -~ AE]

and

a.(**B)-a,(®™N)=(0.52+0.09Y%/MeV.  (12)
From this we have

Sr/fa==(=0.96+0.35)x10"* (13)

with x=1, It is interesting to note that this is al-
so given by fp,=-(3.5+1.3)f,/2M, which is close-
ly related to the strength of weak magnetism.
The f ,/2M term in g, of Eq. (10) has a reason-
able magnitude but with an opposite sign from
the experimental data, o. +a,, at the present
stage® [@.(**B)=(0.31+0.06Y%/MeV and a, (**N)
==(0.21+0.07Y%/MeV|. A possible small effect
of [(G+T)T and [0r? is under investigation.

Up to this point, we have made the impulse ap-
proximation. We can take into account possible
meson-exchange effects by regarding x, y, and ¢
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in Eqgs. (3) as parameters. (y for f, is no longer
unity.) Equivalently, we regard a and b in Egs.
(13) as parameters, and the coupling constants
in Eqgs. (10) as those modified by the exchange
currents., Infact, Eq. (13) coincides with the
equation in the elementary-particle approach.”

In this case, f,in Egs. (10) may be written as
/25 which is not equal to f, in Eq. (4) anymore.
Although the relation of f, to f,ff is model de-
pendent, the experimental data in Eq. (12) do not
lose their importance by giving us a nonzero val-
ue for f,°ff, which is of the second class anyhow.
This is because the magnitude of a including the
mesonic corrections is known in the experiment.®
Adopting the experimental value [¥a=(1.07
+0.24Y%/MeV], we have f,°f/f o=~ (3.5x1.5)/
2M.
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We have assumed the point nuclear charge in
Eq. (9). The effect of the finite nuclear size can
be evaluated in a way described in the referenc-
es.® A contribution of the pseudoscalar term in
Eq. (4) is very small as is given elsewhere.'®
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An electrostatic confinement device has provided resonance linewidths =~ 1 kHz for the
hyperfine transition F=1, m;=0 to F=0, in metastable 2s *He*. The state-selection and
resonance-detection scheme is the same used in an earlier ion-beam experiment; how-
ever, ion storage has yielded a resonance linewidth narrower by a factor of 100. Our re-
sult for the 2s hyperfine structure is Av,=1083.354969(30) MHz. Comparison with the 1s
hyperfine structure yields a test of state-dependent terms in the theory.

It is well known that in the theory of the hyper-
fine structure of atomic hydrogen, uncertainty in
the size of the nuclear-structure correction lim-
its comparison with experiment to the level of
about 3 ppm. This far exceeds the experimental
precision of =~ 1x 107° ppm, and, for example,
precludes a good test of the quantum-electrody -~
namic (QED) correction term proportional to
a(Za)? which is calculated* to be 2.27(62) ppm.

It is possible, however, to reduce the importance
of nuclear structure if one compares the hfs in
the 2s and 1s states. In particular the quantity
D, =(8Av,-Av,), where Av, and Av, are the 2s
and 1s hfs, has a contribution in hydrogen due to
the a(Za)? term of about 2%, whereas the nucle-

ar structure is not expected to contribute more
than about 0.01%. The obvious drawback to this
strategy is the requirement for two precision
measurements.

In the case of *He™, in a unique and pioneering
experiment, Novick and Commins® measured Av,
=1083.354 99(20) MHz and, by a novel ion-stor-
age technique, Schuessler, Fortson, and Deh-
melt® measured Av, =8665.649 867(10) MHz. This
yields D,, =1.1901(16) MHz. One sees that the un-
certainty in Av, is responsible for virtually all
the uncertainty in D,,. It was the goal of the pres-
ent work to determine Av, more accurately. Our
experiment uses the same method of state selec-
tion and resonance detection as the work of No-
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