(1974).
${ }^{6}$ J. J. Simpson et al., Phys. Rev. C (to be published).
${ }^{7}$ A. Tellez et al., J. Phys. (Paris) 34, 281 (1973).
${ }^{8}$ The authors of Ref. 7 considered the possibility that the $6930-\mathrm{keV}$ state was a doublet because of a slight discrepancy in γ-ray energy and lifetime measurements. Using their data with the knowledge of the existence of a doublet, we place the member which decays to the $3737-\mathrm{keV}$ state at $6927.0 \pm 1.5 \mathrm{keV}$.
${ }^{9} \mathrm{The}\left({ }^{6} \mathrm{Li}, d\right)$ reaction on ${ }^{36} \mathrm{Ar}$ also suggests a 6^{+}state at 6.93 MeV . H. T. Fortune, in Proceedings of the International Conference on Nuclear Structure and Spectroscopy, Amsterdam, 1974, edited by H. P. Blok and
A. E. L. Dieperink (Scholar's Press, Amsterdam, 1974), Vol. 2, p. 367.
${ }^{10}$ P. M. Endt and C. Van der Leun, Nucl. Phys. A214, 1 (1973).
${ }^{11}$ J. A. Grau et al., Phys. Rev. Lett. 32, 677 (1974).
${ }^{12}$ D. F. Geesaman et al., Phys. Rev. Lett. 34, 326 (1975).
${ }^{13}$ If the γ ray from the $6930-\mathrm{keV}$ doublet to the $5278-$ $\mathrm{keV} 4^{+}$state observed in Ref. 7 is from the 6^{+}state, then the lifetime implies a $B(E 2 ; 6 \rightarrow 4)$ value of (440 $\pm 120) e^{2} \mathrm{fm}^{4}$ ($54 \mathrm{~W} . \mathrm{u}$.), in reasonable agreement with the rotational model.
${ }^{14}$ L. Zamick, Phys. Lett. 19, 580 (1965).

Asymmetry of Beta-Ray Angular Distribution in Polarized Nuclei

 and G-Parity NonconservationM. Morita and I. Tanihata
Department of Physics, Osaka University, Toyonaka, Osaka 560, Japan
(Received 31 March 1975)

Abstract

We have derived an equation for the β-ray angular distribution including Coulomb corrections, radiative corrections, induced effect, and higher-order nuclear matrices. With this equation and the experimental data on β-ray asymmetries in polarized ${ }^{12} \mathrm{~B}$ and ${ }^{12} \mathrm{~N}$, we conclude that the strength of the second-class induced tensor is $f_{T} / f_{A}=-(0.96$ $\pm 0.35) \times 10^{-3}$ in the limit of the impulse approximation. A possible modification of this value due to mesonic corrections is discussed.

Since Weinberg proposed a measurement of the $f t$-value ratio in mirror β decays to test a possible existence of the second-class currents in weak interactions, ${ }^{1}$ there have been a number of articles published on this subject. Among those, Wilkinson and his co-workers have made an extensive search for the asymmetries of the $f t$ values experimentally. ${ }^{2}$ The results were originally thought to be a direct indication for the induced tensor interaction. Later on, these were, however, recognized as the sum of the effects due to nuclear structure, the induced tensor term f_{T} [see Eq. (4)], and possible meson-exchange currents. In a model calculation, ${ }^{3}$ Kubodera, Delorme, and Rho adopted the meson-exchange effect due to $\omega \rightarrow \pi e \nu$, and they gave a ratio

$$
(f t)_{+} /(f t)_{-}-1=\delta_{\exp }=\delta_{\mathrm{scc}}+\delta_{\text {nucl }} .
$$

Here

$$
\delta_{\mathrm{scc}}=-4\left(\lambda / f_{A}\right) J+\left(2 / 3 f_{A}\right)(\lambda L-2 \zeta)\left(E_{0}^{-}+E_{0}^{+}\right)
$$

and $\delta_{\text {nucl }}$ represents the nuclear-structure effect. The effect of the second-class current, $\delta_{s c c}$, is also dependent on the nuclear model through J
and L, while λ is a combination of the strongcoupling constants including the $\omega-\rho$ mixing parameter, and ζ is nearly equal to f_{T}. Wilkinson made an analysis of $\delta_{\text {exp }}$ in the region of mass number $A=8-30$ systematically, using available nuclear models. He obtained as limits for the parameters ${ }^{2}$

$$
|\zeta| \leqslant 2.5 \times 10^{-3} \mathrm{MeV}^{-1} \text { and }|\lambda| \leqslant 10 \times 10^{-3} .
$$

Here the combination $\zeta=\lambda=0$ is not necessarily excluded, while the theory does not give us a single value of λ, since it contains a logarithmic divergence.

Less ambiguous information for the secondclass current can be obtained from the measurement of the β-ray asymmetries in polarized nuclei. A long-awaited experiment on ${ }^{12} \mathrm{~B}$ and ${ }^{12} \mathrm{~N}$ was recently performed successfully by Sugimoto, Tanihata, and Göring. ${ }^{4}$ In order to derive a conclusion about G-parity nonconservation from this experiment, we have to be careful to include all induced effects, higher-order corrections, etc., in the equation for the angular distribution of β rays. ${ }^{5-8}$ In particular, the radiative corrections
are important, at least for the β-ray spectrum, ${ }^{9}$ and the Coulomb corrections are nonnegligible for the electron waves, especially with $j \geqslant \frac{3}{2}$. ${ }^{5}$ Since we found several features insufficient for our purpose, first we state the method for determining the equation correctly, and next, we find the strength of G-parity nonconservation. Finally, we make a comment on possible modification due to meson-exchange effects, since our equation is based on the impulse approximation.

The higher-order corrections including Coulomb corrections are given in extended form by one of the present authors whose equations ${ }^{5}$ include no induced tensor coupling. The effect of this G-parity-nonconserving second-class current is, however, easily taken into account by replacing in the published equations ${ }^{5}$ the factors [in terms of Eq. (4) below]

$$
\begin{align*}
& C_{A} \int \vec{\sigma} \text { by }\left(f_{A}-E_{0} f_{T}\right) \int \vec{\sigma} \text { and } \\
& \quad C_{A}\left(i \int \gamma_{5} \overrightarrow{\mathbf{r}}\right) \text { by }\left(f_{A}+2 M f_{T}\right)\left(i \int \gamma_{5} \overrightarrow{\mathrm{r}}\right), \tag{1}
\end{align*}
$$

where $C_{V}=f_{V}(0)$ and $C_{A}=f_{A}(0)$. We also adopt the nonrelativistic approximation for nuclear matrix elements:

$$
\begin{align*}
& \int \vec{\alpha} \times \overrightarrow{\mathrm{r}}=x\left[\left(1+\mu_{p}-\mu_{n}\right) / M\right] \int \vec{\sigma}, \tag{2}\\
& i \int \gamma_{5} \overrightarrow{\mathrm{r}}=-y(1 / 2 M) \int \vec{\sigma} .
\end{align*}
$$

Here $1+\mu_{p}-\mu_{n}=4.7$, and M is the nucleon mass. The parameters x and y are nuclear-model dependent, and they are given by

$$
\begin{align*}
& x=1+(1 / 4.7)\left(\int \overrightarrow{\mathrm{r}} \times \overrightarrow{\mathrm{p}}\right) /\left(\int \vec{\sigma}\right), \\
& y=1+i 2 c\left[\int \overrightarrow{\mathrm{r}}(\vec{\sigma} \cdot \overrightarrow{\mathrm{p}})\right] /\left(\int \vec{\sigma}\right) . \tag{3}
\end{align*}
$$

Here c is 1 for f_{A} and 0 for f_{T}. The reason for no nucleon-recoil term for f_{T} is seen in Eq. (7) below. In the case of ${ }^{12} \mathrm{~B}$ and ${ }^{12} \mathrm{~N}$, we have $x \approx 1,{ }^{10}$ and $y \approx 1.5$ for $c=1 .{ }^{11}$

We adopt the interaction Hamiltonian density

$$
\begin{equation*}
H=\left\{\bar{\psi}_{p}\left[\gamma_{\lambda}\left(f_{V}-f_{A} \gamma_{5}\right)+\sigma_{\lambda \nu} k_{\nu}\left(f_{W}+f_{T} \gamma_{5}\right)+i k_{\lambda}\left(f_{S}+f_{P} \gamma_{5}\right)\right] \psi_{n}\right\}\left[\bar{\psi}_{e} \gamma_{\lambda}\left(1+\gamma_{5}\right) \psi_{\nu}\right] / \sqrt{2}+\text { H.c., } \tag{4}
\end{equation*}
$$

with $k=k_{p}-k_{n}$ and $\sigma_{\lambda \nu}=\left[\gamma_{\lambda}, \gamma_{\nu}\right] / 2 i$. The coupling constants for β decay are

$$
\begin{align*}
& f_{V}(0)=(3.001 \pm 0.002) \times 10^{-12} \hbar^{3} / m^{2} c \\
& f_{A}(0)=-(1.239 \pm 0.011) f_{V}(0) \tag{5a}\\
& f_{W}=-\left(\mu_{D}-\mu_{n}\right) f_{V} / 2 M=-3.7 f_{V} / 2 M, f_{S}=0,
\end{align*}
$$

from conservation of vector current,

$$
\begin{equation*}
f_{P} \approx f_{A} / 25, \tag{5b}
\end{equation*}
$$

from partial conservation of axial-vector current. The induced tensor term, $f_{\boldsymbol{T}}$, introduced by Weinberg ${ }^{1}$ is now being revealed. Equation (1) can be derived by comparing the space and time components of f_{A} and f_{T} in Eq. (4),

$$
\begin{equation*}
\left(f_{A}-E_{0} f_{T}\right)\left(\psi_{p}^{\dagger} \vec{\sigma} \psi_{n}\right) \cdot\left[\psi_{e}^{\dagger} \vec{\sigma}\left(1+\gamma_{5}\right) \psi_{\nu}\right] \text { and }-\left[f_{A}\left(\psi_{p}^{\dagger} \gamma_{5} \psi_{n}\right)+i f_{T}\left(\psi_{p}^{\dagger} \vec{\gamma} \gamma_{5} \psi_{n}\right) \cdot \overrightarrow{\mathrm{p}}\right]\left[\psi_{e}^{\dagger}\left(1+\gamma_{5}\right) \psi_{\nu}\right], \tag{6}
\end{equation*}
$$

where $\overrightarrow{\mathrm{p}}$ is the differential operator, and adopting the nonrelativistic approximation with two-component spinor u,

$$
\begin{align*}
& \left(\psi_{p}^{\dagger} \gamma_{5} \psi_{n}\right)=-\left(\frac{1}{2} M\right)\left[\left(u_{p}^{\dagger} \vec{\sigma} u_{n}\right) \cdot \overrightarrow{\mathrm{p}}+2\left(u_{p}^{\dagger} \vec{\sigma} \cdot \overrightarrow{\mathrm{p}} u_{n}\right)\right], \tag{7}\\
& i\left(\psi_{p}^{\dagger} \vec{\gamma} \gamma_{5} \psi_{n}\right) \cdot \overrightarrow{\mathrm{p}}=-\left(u_{p}^{\dagger} \vec{\sigma} u_{n}\right) \cdot \overrightarrow{\mathrm{p}} \approx 2 M\left(\psi_{p}^{\dagger} \gamma_{5} \psi_{n}\right) \tag{8}
\end{align*}
$$

Equation (8) is useful for deriving rule (1), by neglecting the nucleon recoil. In practice, a correction in Eq. (3) should be considered.

The explicit form of angular distribution of β rays in polarized nuclei is very lengthy; one must take into account Coulomb corrections, higher-order nuclear matrices of momentum type as well as coordinate type, radiative corrections, ${ }^{12}$ and $f_{\boldsymbol{T}}$ terms simultaneously. These can be obtained from Ref. 5 by the replacements (1) and (2). To save space, we only give an expression for the $1^{+} \rightarrow 0^{+}$transition by omitting the contributions of $\int \vec{\sigma} r^{2}$ and $\int(\vec{\sigma} \cdot \overrightarrow{\mathbf{r}}) \overrightarrow{\mathbf{r}}$ (the finite de Broglie wavelength effect is, however,
included in the main L_{0} and Λ_{1} terms $\left.{ }^{5}\right)$:

$$
\begin{align*}
W(\theta)=\mid & \left.f_{A}\right|^{2}\left|\int \vec{\sigma}\right|^{2}\left(\left\{\left[1 \mp 2 E_{0}\left(f_{\boldsymbol{T}} / f_{A}\right)\right]\left[1+F\left(E, E_{0}\right)\right]\left[\frac{1}{2}(1+\gamma) \mp \frac{10}{3} V R^{2} E \mp(2 / 3 E) V R^{2}-\left(p^{2} / 3\right) R^{2}\right]\right.\right. \\
& \mp \frac{4}{3} a\left[E_{0}-2 E+(1 / E) \mp\left(\frac{2}{3}\right) b\left[E_{0}-(1 / E) \pm 3 V\right]\right\} \\
& \mp P(p / E)\left\{\left[1 \mp 2 E_{0}\left(f_{T} / f_{A}\right)\right]\left[1+G\left(E, E_{0}\right)\right]\left[\frac{1}{2}(1+\gamma) \mp \frac{10}{3} V R^{2} E-\left(p^{2} / 3\right) R^{2}\right]\right. \\
& \left.\mp \frac{2}{3} a\left[2 E_{0}-5 E \mp 6 V\right] \pm \frac{2}{3} b\left[E_{0}-E \pm 3 V\right] \mp a^{\prime} V R[p+(4 / p)]\right\} \cos \theta \\
& \left. \pm A\left\{\frac{2}{3}(a-b)[E-(1 / E)] \mp a^{\prime} V R p\right\} \frac{1}{2}\left(3 \cos ^{2} \theta-1\right)\right) . \tag{9}
\end{align*}
$$

with

$$
\begin{align*}
& \gamma=\left(1-\alpha^{2} Z^{2}\right)^{1 / 2}, \quad V=\alpha Z / 2 R, \\
& P=a_{1}-a_{-1}, \\
& A=1-3 a_{0}, \\
& a=x \operatorname{Re}\left(f_{A} g_{W}^{*}\right) /\left|f_{A}\right|^{2}, \quad g_{W}=f_{W}-\left(f_{V} / 2 M\right), \tag{10}\\
& b=\operatorname{Re}\left(f_{A} g_{T}^{*}\right) /\left|f_{A}\right|^{2}, \quad g_{T}=f_{T} \pm y\left(f_{A} / 2 M\right), \\
& a^{\prime}=\operatorname{Im}\left(f_{A} g_{W}{ }^{*}\right) /\left|f_{A}\right|^{2} .
\end{align*}
$$

Here F and G are radiative corrections, ${ }^{12}$ and V is half of the Coulomb energy at the nuclear surface. p, E, and E_{0} are the momentum, energy, and maximum energy of the electron, respectively. The upper sign refers to the electron, and the lower sign refers to the positron. The angle θ is the direction of the electron emission with respect to the nuclear polarization axis; p is the nuclear polarization and A is the nuclear alignment. The a_{i} 's are the magnetic substate densities ($\sum_{i} a_{i}=1$). The units $\hbar=m_{e}$ $=c=1$ are adopted. Assuming small real values for a and b, we can rewrite Eq. (9) as

$$
\begin{align*}
W(\theta)= & \operatorname{const}\left[1+F\left(E, E_{0}\right)\right]\left[1 \pm \frac{8}{3} a E\right] \\
& \times\left\{1 \mp P(p / E)\left[1 \pm \frac{2}{3}(a-b) E\right] \cos \theta \pm A \frac{2}{3}(a-b) E \frac{1}{2}\left(3 \cos ^{2} \theta-1\right)\right\} . \tag{11}
\end{align*}
$$

Here the energy-dependent radiative corrections ${ }^{12} F\left(E, E_{0}\right)$ and the V and E_{0} terms are factorized in the first line, while the minor terms, $1 / E, \alpha Z / E$, and R^{2}, are simply omitted. It is noticed here that the factorization of the electromagnetic interactions in Eq. (11) is by no means self-evident without calculations. In fact, this is not the case, if $\int(\vec{\sigma} \cdot \overrightarrow{\mathbf{r}}) \overrightarrow{\mathbf{r}}$ and $\int \vec{\sigma} r^{2}$ are explicitly taken into consideration. ${ }^{5}$
Experimentally, the asymmetry of the β-ray angular distribution is given in a form

$$
\mathfrak{Q}=[W(0)-W(\pi)] /[W(0)+W(\pi)]=\mp P(p / E)\left[1+\alpha_{\mp}(1-A) E\right]
$$

and

$$
\begin{equation*}
\alpha_{-}\left({ }^{12} \mathrm{~B}\right)-\alpha_{+}\left({ }^{12} \mathrm{~N}\right)=(0.52 \pm 0.09) \% / \mathrm{MeV} \tag{12}
\end{equation*}
$$

From this we have

$$
\begin{equation*}
f_{T} / f_{A}=-(=0.96 \pm 0.35) \times 10^{-3} \tag{13}
\end{equation*}
$$

with $x=1$. It is interesting to note that this is also given by $f_{T}=-(3.5 \pm 1.3) f_{A} / 2 M$, which is closely related to the strength of weak magnetism.
The $f_{A} / 2 M$ term in g_{A} of Eq. (10) has a reasonable magnitude but with an opposite sign from the experimental data, $\alpha_{-}+\alpha_{+}$, at the present stage ${ }^{4}\left[\alpha_{-}\left({ }^{12} \mathrm{~B}\right)=(0.31 \pm 0.06) \% / \mathrm{MeV}\right.$ and $\alpha_{+}\left({ }^{12} \mathrm{~N}\right)$ $=-(0.21 \pm 0.07) \% / \mathrm{MeV}]$. A possible small effect of $\int(\vec{\sigma} \cdot \vec{r}) \vec{r}$ and $\int \vec{\sigma} r^{2}$ is under investigation.

Up to this point, we have made the impulse approximation. We can take into account possible meson-exchange effects by regarding x, y, and c
in Eqs. (3) as parameters. (y for f_{T} is no longer unity.) Equivalently, we regard a and b in Eqs. (13) as parameters, and the coupling constants in Eqs. (10) as those modified by the exchange currents. In fact, Eq. (13) coincides with the equation in the elementary-particle approach. ${ }^{7}$ In this case, f_{T} in Eqs. (10) may be written as ${f_{T}}^{\text {eff }}$ which is not equal to f_{T} in Eq. (4) anymore. Although the relation of f_{T} to $f_{T}{ }^{\text {eff }}$ is model dependent, the experimental data in Eq. (12) do not lose their importance by giving us a nonzero value for $f_{T}{ }^{\text {eff }}$, which is of the second class anyhow. This is because the magnitude of a including the mesonic corrections is known in the experiment. ${ }^{10}$ Adopting the experimental value $\left[\frac{16}{3} a=(1.07\right.$ $\pm 0.24) \% / \mathrm{MeV}]$, we have $f_{T}{ }^{\text {eff }} / f_{A}{ }^{\text {eff }}=-(3.5 \pm 1.5) /$ $2 M$.

We have assumed the point nuclear charge in Eq. (9). The effect of the finite nuclear size can be evaluated in a way described in the references. ${ }^{5}$ A contribution of the pseudoscalar term in Eq. (4) is very small as is given elsewhere. ${ }^{13}$
The authors would like to express their sincere thanks to Professor K. Sugimoto and Dr. H. Ohtsubo for stimulating discussions. This work is partially supported by the Takahashi Foundation.
${ }^{1}$ S. Weinberg, Phys. Rev. 112, 1375 (1958).
${ }^{2}$ D. H. Wilkinson, Phys. Lett. 48B, 169 (1974). See also references to previous work given here.
${ }^{3}$ K. Kubodera, J. Delorme, and M. Rho, Nucl. Phys. B66, 253 (1973).
${ }^{4}$ K. Sugimoto, I. Tanihata, and J. Göring, Phys. Rev. Lett. 34, 1533 (1975).
${ }^{5}$ M. Morita, Nucl. Phys. 14, 106 (1959), and Phys. Rev. 113, 1584 (1959), and Progr. Theor. Phys. Suppl. 26, 1 (1963), and Beta Decay and Muon Capture (Ben-
jamin, Reading, Mass., 1973); M. Morita, M. Fuyuki, and S. Tsukada, Progr. Theor. Phys. 47, 556 (1972).
${ }^{6}$ C. W. Kim, Phys. Lett. 34B, 383 (1971); J. Delorme and M. Rho, Nucl. Phys. B34, 317 (1971).
${ }^{7}$ B. R. Holstein and S. B. Treiman, Phys. Rev. C 3, 1921 (1971) ; B. R. Holstein, W. Shanahan, and S. B. Treiman, Phys. Rev. C 5 , 1849 (1972); B. R. Holstein, Rev. Mod. Phys. 46, 789 (1974).
${ }^{8}$ S. Nakamura, S. Sato, and M. Igarashi, Progr. Theor. Phys. 48, 1899 (1972); M. Igarashi, Progr. Theor. Phys. 48, 1237 (1972).
${ }^{9}$ T. Kinoshita and A. Sirlin, Phys. Rev. 113, 1652 (1959) ; S. M. Berman and A. Sirlin, Ann. Phys. (New York) 20, 20 (1962).
${ }^{10}$ See, the second paper of Ref. 5. Experimentally, $x=1.00 \pm 0.22$; see C. S. Wu, Rev. Mod. Phys. 36, 618 (1964).
${ }^{11}$ This is given by H. Ohtsubo in a shell-model calculation, private communication.
${ }^{12}$ Y. Yokoo, S. Suzuki, and M. Morita, Progr. Theor. Phys. 50, 1894 (1973). Radiative corrections to the $\cos \theta$ term are almost identical with those to the β-ray spectrum.
${ }^{13} \mathrm{M}$. Morita, to be published.

Hyperfine Structure of $2 s^{3} \mathrm{He}^{+}$by an Ion-Storage Technique*

M. H. Prior and E. C. Wang
Department of Physics and Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720

(Received 31 March 1975)

Abstract

An electrostatic confinement device has provided resonance linewidths $\simeq 1 \mathrm{kHz}$ for the hyperfine transition $F=1, m_{F}=0$ to $F=0$, in metastable $2 s{ }^{3} \mathrm{He}^{+}$. The state-selection and resonance-detection scheme is the same used in an earlier ion-beam experiment; however, ion storage has yielded a resonance linewidth narrower by a factor of 100. Our result for the $2 s$ hyperfine structure is $\Delta \nu_{2}=1083.354969(30) \mathrm{MHz}$. Comparison with the $1 s$ hyperfine structure yields a test of state-dependent terms in the theory.

It is well known that in the theory of the hyperfine structure of atomic hydrogen, uncertainty in the size of the nuclear-structure correction limits comparison with experiment to the level of about 3 ppm . This far exceeds the experimental precision of $\simeq 1 \times 10^{-6} \mathrm{ppm}$, and, for example, precludes a good test of the quantum-electrodynamic (QED) correction term proportional to $\alpha(Z \alpha)^{2}$ which is calculated ${ }^{1}$ to be $2.27(62) \mathrm{ppm}$. It is possible, however, to reduce the importance of nuclear structure if one compares the hfs in the $2 s$ and $1 s$ states. In particular the quantity $\boldsymbol{D}_{21} \equiv\left(8 \Delta \nu_{2}-\Delta \nu_{1}\right)$, where $\Delta \nu_{2}$ and $\Delta \nu_{1}$ are the $2 s$ and $1 s$ hfs, has a contribution in hydrogen due to the $\alpha(Z \alpha)^{2}$ term of about 2%, whereas the nucle-
ar structure is not expected to contribute more than about 0.01%. The obvious drawback to this strategy is the requirement for two precision measurements.

In the case of ${ }^{3} \mathrm{He}^{+}$, in a unique and pioneering experiment, Novick and Commins ${ }^{2}$ measured $\Delta \nu_{2}$ $=1083.35499(20) \mathrm{MHz}$ and, by a novel ion-storage technique, Schuessler, Fortson, and Dehmelt ${ }^{3}$ measured $\Delta \nu_{1}=8665.649867(10) \mathrm{MHz}$. This yields $D_{21}=1.1901(16) \mathrm{MHz}$. One sees that the uncertainty in $\Delta \nu_{2}$ is responsible for virtually all the uncertainty in D_{21}. It was the goal of the present work to determine $\Delta \nu_{2}$ more accurately. Our experiment uses the same method of state selection and resonance detection as the work of No-

