(1974).

⁶J. J. Simpson *et al.*, Phys. Rev. C (to be published). ⁷A. Tellez *et al.*, J. Phys. (Paris) 34, 281 (1973).

⁸The authors of Ref. 7 considered the possibility that the 6930-keV state was a doublet because of a slight discrepancy in γ -ray energy and lifetime measurements. Using their data with the knowledge of the existence of a doublet, we place the member which decays to the 3737-keV state at 6927.0±1.5 keV.

⁹The (⁶Li,d) reaction on ³⁶Ar also suggests a 6⁺ state at 6.93 MeV. H. T. Fortune, in *Proceedings of the International Conference on Nuclear Structure and Spectroscopy, Amsterdam, 1974,* edited by H. P. Blok and A. E. L. Dieperink (Scholar's Press, Amsterdam, 1974), Vol. 2, p. 367.

¹⁰P. M. Endt and C. Van der Leun, Nucl. Phys. <u>A214</u>, 1 (1973).

¹¹J. A. Grau *et al.*, Phys. Rev. Lett. <u>32</u>, 677 (1974). ¹²D. F. Geesaman *et al.*, Phys. Rev. Lett. <u>34</u>, 326 (1975).

¹³If the γ ray from the 6930-keV doublet to the 5278keV 4⁺ state observed in Ref. 7 is from the 6⁺ state, then the lifetime implies a $B(E2; 6 \rightarrow 4)$ value of (440 $\pm 120)e^2$ fm⁴ (54 W.u.), in reasonable agreement with the rotational model.

¹⁴L. Zamick, Phys. Lett. <u>19</u>, 580 (1965).

Asymmetry of Beta-Ray Angular Distribution in Polarized Nuclei

and G-Parity Nonconservation

M. Morita and I. Tanihata

Department of Physics, Osaka University, Toyonaka, Osaka 560, Japan (Received 31 March 1975)

We have derived an equation for the β -ray angular distribution including Coulomb corrections, radiative corrections, induced effect, and higher-order nuclear matrices. With this equation and the experimental data on β -ray asymmetries in polarized ¹²B and ¹²N, we conclude that the strength of the second-class induced tensor is $f_T/f_A = -(0.96 \pm 0.35) \times 10^{-3}$ in the limit of the impulse approximation. A possible modification of this value due to mesonic corrections is discussed.

Since Weinberg proposed a measurement of the *ft*-value ratio in mirror β decays to test a possible existence of the second-class currents in weak interactions,¹ there have been a number of articles published on this subject. Among those, Wilkinson and his co-workers have made an extensive search for the asymmetries of the *ft* values experimentally.² The results were originally thought to be a direct indication for the induced tensor interaction. Later on, these were, however, recognized as the sum of the effects due to nuclear structure, the induced tensor term f_{τ} [see Eq. (4)], and possible meson-exchange currents. In a model calculation,³ Kubodera, Delorme, and Rho adopted the meson-exchange effect due to $\omega \rightarrow \pi e \nu$, and they gave a ratio

$$(ft)_+/(ft)_- - 1 = \delta_{exp} = \delta_{scc} + \delta_{nucl}.$$

Here

$$\delta_{scc} = -4(\lambda/f_A)J + (2/3f_A)(\lambda L - 2\zeta)(E_0^- + E_0^+)$$

and δ_{nucl} represents the nuclear-structure effect. The effect of the second-class current, δ_{scc} , is also dependent on the nuclear model through J and *L*, while λ is a combination of the strongcoupling constants including the ω - ρ mixing parameter, and ξ is nearly equal to f_T . Wilkinson made an analysis of δ_{exp} in the region of mass number A = 8-30 systematically, using available nuclear models. He obtained as limits for the parameters²

 $|\zeta| \le 2.5 \times 10^{-3} \text{ MeV}^{-1} \text{ and } |\lambda| \le 10 \times 10^{-3}$.

Here the combination $\zeta = \lambda = 0$ is not necessarily excluded, while the theory does not give us a single value of λ , since it contains a logarithmic divergence.

Less ambiguous information for the secondclass current can be obtained from the measurement of the β -ray asymmetries in polarized nuclei. A long-awaited experiment on ¹²B and ¹²N was recently performed successfully by Sugimoto, Tanihata, and Göring.⁴ In order to derive a conclusion about *G*-parity nonconservation from this experiment, we have to be careful to include all induced effects, higher-order corrections, etc., in the equation for the angular distribution of β rays.⁵⁻⁸ In particular, the radiative corrections VOLUME 35, NUMBER 1

are important, at least for the β -ray spectrum,⁹ and the Coulomb corrections are nonnegligible for the electron waves, especially with $j \ge \frac{3}{2}$.⁵ Since we found several features insufficient for our purpose, first we state the method for determining the equation correctly, and next, we find the strength of *G*-parity nonconservation. Finally, we make a comment on possible modification due to meson-exchange effects, since our equation is based on the impulse approximation.

The higher-order corrections including Coulomb corrections are given in extended form by one of the present authors whose equations⁵ include no induced tensor coupling. The effect of this *G*-parity-nonconserving second-class current is, however, easily taken into account by replacing in the published equations⁵ the factors [in terms of Eq. (4) below]

$$C_{A} \int \vec{\sigma} \text{ by } (f_{A} - E_{0}f_{T}) \int \vec{\sigma} \text{ and}$$

$$C_{A}(i \int \gamma_{5}\vec{r}) \text{ by } (f_{A} + 2Mf_{T})(i \int \gamma_{5}\vec{r}), \qquad (1)$$

where $C_v = f_v(0)$ and $C_A = f_A(0)$. We also adopt the nonrelativistic approximation for nuclear matrix elements:

$$\int \vec{\alpha} \times \vec{\mathbf{r}} = x \left[(1 + \mu_p - \mu_n) / M \right] \int \vec{\sigma},$$

$$i \int \gamma_5 \vec{\mathbf{r}} = -y (1/2M) \int \vec{\sigma}.$$
(2)

Here $1 + \mu_p - \mu_n = 4.7$, and *M* is the nucleon mass. The parameters *x* and *y* are nuclear-model dependent, and they are given by

$$x = 1 + (1/4.7) (\int \vec{\mathbf{r}} \times \vec{\mathbf{p}}) / (\int \vec{\sigma}),$$

$$y = 1 + i2c [\int \vec{\mathbf{r}} (\vec{\sigma} \cdot \vec{\mathbf{p}})] / (\int \vec{\sigma}).$$
(3)

Here c is 1 for f_A and 0 for f_T . The reason for no nucleon-recoil term for f_T is seen in Eq. (7) below. In the case of ¹²B and ¹²N, we have $x \approx 1$,¹⁰ and $y \approx 1.5$ for c = 1.¹¹

We adopt the interaction Hamiltonian density

$$H = \left\{ \overline{\psi}_{p} \left[\gamma_{\lambda} (f_{V} - f_{A} \gamma_{5}) + \sigma_{\lambda \nu} k_{\nu} (f_{W} + f_{T} \gamma_{5}) + i k_{\lambda} (f_{S} + f_{P} \gamma_{5}) \right] \psi_{n} \right\} \left[\overline{\psi}_{e} \gamma_{\lambda} (1 + \gamma_{5}) \psi_{\nu} \right] / \sqrt{2} + \text{H.c.},$$
(4)

with $k = k_p - k_n$ and $\sigma_{\lambda\nu} = [\gamma_{\lambda}, \gamma_{\nu}]/2i$. The coupling constants for β decay are

$$f_{V}(0) = (3.001 \pm 0.002) \times 10^{-12} \hbar^{3} / m^{2} c,$$

$$f_{A}(0) = -(1.239 \pm 0.011) f_{V}(0),$$

$$f_{W} = -(\mu_{p} - \mu_{n}) f_{V} / 2M = -3.7 f_{V} / 2M, f_{S} = 0,$$

(5a)

from conservation of vector current,

 $f_{\boldsymbol{p}} \approx f_{\boldsymbol{A}}/25$, (5b)

from partial conservation of axial-vector current. The induced tensor term, f_T , introduced by Weinberg¹ is now being revealed. Equation (1) can be derived by comparing the space and time components of f_A and f_T in Eq. (4),

$$(f_A - E_0 f_T)(\psi_p^{\dagger} \vec{\sigma} \psi_n) \cdot [\psi_e^{\dagger} \vec{\sigma} (1 + \gamma_5) \psi_\nu] \text{ and } - [f_A(\psi_p^{\dagger} \gamma_5 \psi_n) + i f_T(\psi_p^{\dagger} \vec{\gamma} \gamma_5 \psi_n) \cdot \vec{p}] [\psi_e^{\dagger} (1 + \gamma_5) \psi_\nu], \tag{6}$$

where \vec{p} is the differential operator, and adopting the nonrelativistic approximation with two-component spinor u,

$$(\psi_{p}^{\dagger}\gamma_{5}\psi_{n}) = -\left(\frac{1}{2}M\right)\left[\left(u_{p}^{\dagger}\vec{\sigma}u_{n}\right)\cdot\vec{p} + 2\left(u_{p}^{\dagger}\vec{\sigma}\cdot\vec{p}u_{n}\right)\right],\tag{7}$$

$$i\left(\psi_{p}^{\dagger}\gamma\gamma_{5}\psi_{n}\right)\cdot\vec{\mathbf{p}}=-\left(u_{p}^{\dagger}\vec{\sigma}u_{n}\right)\cdot\vec{\mathbf{p}}\approx 2M\left(\psi_{p}^{\dagger}\gamma_{5}\psi_{n}\right).$$
(8)

Equation (8) is useful for deriving rule (1), by neglecting the nucleon recoil. In practice, a correction in Eq. (3) should be considered.

The explicit form of angular distribution of β rays in polarized nuclei is very lengthy; one must take into account Coulomb corrections, higher-order nuclear matrices of momentum type as well as coordinate type, radiative corrections,¹² and f_T terms simultaneously. These can be obtained from Ref. 5 by the replacements (1) and (2). To save space, we only give an expression for the 1⁺- 0⁺ transition by omitting the contributions of $\int \vec{\sigma} r^2$ and $\int (\vec{\sigma} \cdot \vec{r}) \vec{r}$ (the finite de Broglie wavelength effect is, however,

(9)

(10)

included in the main L_0 and Λ_1 terms⁵):

$$\begin{split} W(\theta) &= |f_A|^2 |\int \tilde{\sigma}|^2 \left(\left\{ \left[1 \mp 2E_0(f_T/f_A) \right] \left[1 + F(E, E_0) \right] \left[\frac{1}{2} (1+\gamma) \mp \frac{10}{3} VR^2 E \mp (2/3E) VR^2 - (p^2/3)R^2 \right] \right. \\ & \left. \mp \frac{4}{3} a \left[E_0 - 2E + (1/E) \mp \left(\frac{2}{3} \right) b \left[E_0 - (1/E) \pm 3V \right] \right\} \right] \\ & \left. \mp P(p/E) \left\{ \left[1 \mp 2E_0(f_T/f_A) \right] \left[1 + G(E, E_0) \right] \left[\frac{1}{2} (1+\gamma) \mp \frac{10}{3} VR^2 E - (p^2/3)R^2 \right] \right. \\ & \left. \mp \frac{2}{3} a \left[2E_0 - 5E \mp 6V \right] \pm \frac{2}{3} b \left[E_0 - E \pm 3V \right] \mp a' VR \left[p + (4/p) \right] \right\} \cos \theta \\ & \left. \pm A \left\{ \frac{2}{3} (a-b) \left[E - (1/E) \right] \mp a' VRp \right\} \frac{1}{2} (3\cos^2\theta - 1) \right). \end{split}$$

with

$$\begin{split} \gamma &= (1 - \alpha^2 Z^2)^{1/2}, \quad V = \alpha Z/2R, \\ P &= a_1 - a_{-1}, \\ A &= 1 - 3a_0, \\ a &= x \operatorname{Re}(f_A g_W^*) / |f_A|^2, \quad g_W = f_W - (f_V/2M), \\ b &= \operatorname{Re}(f_A g_T^*) / |f_A|^2, \quad g_T = f_T \pm y(f_A/2M), \\ a' &= \operatorname{Im}(f_A g_W^*) / |f_A|^2. \end{split}$$

Here F and G are radiative corrections,¹² and V is half of the Coulomb energy at the nuclear surface. p, E, and E_0 are the momentum, energy, and maximum energy of the electron, respectively. The upper sign refers to the electron, and the lower sign refers to the positron. The angle θ is the direction of the electron emission with respect to the nuclear polarization axis; p is the nuclear polarization and A is the nuclear alignment. The a_i 's are the magnetic substate densities $(\sum_i a_i = 1)$. The units $\hbar = m_e$ = c = 1 are adopted. Assuming small real values for a and b, we can rewrite Eq. (9) as

$$W(\theta) = \text{const}[1 + F(E, E_0)][1 \pm \frac{8}{3} aE] \\ \times \{1 \mp P(p/E)[1 \pm \frac{2}{3}(a-b)E] \cos\theta \pm A\frac{2}{3}(a-b)E\frac{1}{2}(3\cos^2\theta - 1)\}.$$
(11)

Here the energy-dependent radiative corrections¹² $F(E, E_0)$ and the V and E_0 terms are factorized in the first line, while the minor terms, 1/E, $\alpha Z/E$, and R^2 , are simply omitted. It is noticed here that the factorization of the electromagnetic interactions in Eq. (11) is by no means self-evident without calculations. In fact, this is not the case, if $\int (\vec{\sigma} \cdot \vec{r}) \vec{r}$ and $\int \vec{\sigma} r^2$ are explicitly taken into consideration.⁵ Experimentally, the asymmetry of the β -ray angular distribution is given in a form

$$\mathbf{\alpha} = [W(0) - W(\pi)] / [W(0) + W(\pi)] = \mp P(p/E) [\mathbf{1} + \alpha_{\pi} (\mathbf{1} - A)E]$$

and

$$\alpha_{-}(^{12}B) - \alpha_{+}(^{12}N) = (0.52 \pm 0.09)\% / MeV.$$
 (12)

From this we have

$$f_T/f_A = -(=0.96\pm0.35)\times10^{-3}$$
 (13)

with x = 1. It is interesting to note that this is also given by $f_T = -(3.5 \pm 1.3) f_A/2M$, which is closely related to the strength of weak magnetism. The $f_A/2M$ term in g_A of Eq. (10) has a reasonable magnitude but with an opposite sign from the experimental data, $\alpha_- + \alpha_+$, at the present stage⁴ [$\alpha_-(^{12}\text{B}) = (0.31 \pm 0.06)\%/\text{MeV}$ and $\alpha_+(^{12}\text{N}) = -(0.21 \pm 0.07)\%/\text{MeV}$]. A possible small effect of $\int (\vec{\sigma} \cdot \vec{r})\vec{r}$ and $\int \vec{\sigma}r^2$ is under investigation.

Up to this point, we have made the impulse approximation. We can take into account possible meson-exchange effects by regarding x, y, and c

in Eqs. (3) as parameters. (y for f_T is no longer unity.) Equivalently, we regard a and b in Eqs. (13) as parameters, and the coupling constants in Eqs. (10) as those modified by the exchange currents. In fact, Eq. (13) coincides with the equation in the elementary-particle approach.⁷ In this case, f_T in Eqs. (10) may be written as f_T^{eff} which is not equal to f_T in Eq. (4) anymore. Although the relation of f_T to f_T^{eff} is model dependent, the experimental data in Eq. (12) do not lose their importance by giving us a nonzero value for f_T^{eff} , which is of the second class anyhow. This is because the magnitude of a including the mesonic corrections is known in the experiment.¹⁰ Adopting the experimental value $\left[\frac{16}{3}a = (1.07 \pm 0.24)\%/\text{MeV}\right]$, we have $f_T^{\text{eff}}/f_A^{\text{eff}} = -(3.5 \pm 1.5)/2M$. VOLUME 35, NUMBER 1

We have assumed the point nuclear charge in Eq. (9). The effect of the finite nuclear size can be evaluated in a way described in the references.⁵ A contribution of the pseudoscalar term in Eq. (4) is very small as is given elsewhere.¹³

The authors would like to express their sincere thanks to Professor K. Sugimoto and Dr. H. Ohtsubo for stimulating discussions. This work is partially supported by the Takahashi Foundation.

¹S. Weinberg, Phys. Rev. 112, 1375 (1958).

²D. H. Wilkinson, Phys. Lett. <u>48B</u>, 169 (1974). See also references to previous work given here.

³K. Kubodera, J. Delorme, and M. Rho, Nucl. Phys. <u>B66</u>, 253 (1973).

⁴K. Sugimoto, I. Tanihata, and J. Göring, Phys. Rev. Lett. 34, 1533 (1975).

⁵M. Morita, Nucl. Phys. <u>14</u>, 106 (1959), and Phys. Rev. <u>113</u>, 1584 (1959), and Progr. Theor. Phys. Suppl. 26, 1 (1963), and *Beta Decay and Muon Capture* (Benjamin, Reading, Mass., 1973); M. Morita, M. Fuyuki,

and S. Tsukada, Progr. Theor. Phys. <u>47</u>, 556 (1972). ⁶C. W. Kim, Phys. Lett. <u>34B</u>, 383 (1971); J. Delorme and M. Rho, Nucl. Phys. <u>B34</u>, 317 (1971).

⁷B. R. Holstein and S. B. Treiman, Phys. Rev. C <u>3</u>, 1921 (1971); B. R. Holstein, W. Shanahan, and S. B. Treiman, Phys. Rev. C <u>5</u>, 1849 (1972); B. R. Holstein, Rev. Mod. Phys. <u>46</u>, 789 (1974).

⁸S. Nakamura, S. Sato, and M. Igarashi, Progr. Theor. Phys. <u>48</u>, 1899 (1972); M. Igarashi, Progr. Theor. Phys. <u>48</u>, 1237 (1972).

⁹T. Kinoshita and A. Sirlin, Phys. Rev. <u>113</u>, 1652 (1959); S. M. Berman and A. Sirlin, Ann. Phys. (New York) 20, 20 (1962).

¹⁰See, the second paper of Ref. 5. Experimentally, $x = 1.00 \pm 0.22$; see C. S. Wu, Rev. Mod. Phys. <u>36</u>, 618 (1964).

¹¹This is given by H. Ohtsubo in a shell-model calculation, private communication.

¹²Y. Yokoo, S. Suzuki, and M. Morita, Progr. Theor. Phys. <u>50</u>, 1894 (1973). Radiative corrections to the $\cos\theta$ term are almost identical with those to the β -ray spectrum.

¹³M. Morita, to be published.

Hyperfine Structure of 2s ³He⁺ by an Ion-Storage Technique*

M. H. Prior and E. C. Wang

Department of Physics and Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720 (Received 31 March 1975)

An electrostatic confinement device has provided resonance linewidths $\simeq 1$ kHz for the hyperfine transition F=1, $m_F=0$ to F=0, in metastable 2s ${}^{3}\text{He}^{+}$. The state-selection and resonance-detection scheme is the same used in an earlier ion-beam experiment; how-ever, ion storage has yielded a resonance linewidth narrower by a factor of 100. Our result for the 2s hyperfine structure is $\Delta \nu_2 = 1083.354\,969(30)$ MHz. Comparison with the 1s hyperfine structure yields a test of state-dependent terms in the theory.

It is well known that in the theory of the hyperfine structure of atomic hydrogen, uncertainty in the size of the nuclear-structure correction limits comparison with experiment to the level of about 3 ppm. This far exceeds the experimental precision of $\simeq 1 \times 10^{-6}$ ppm, and, for example, precludes a good test of the quantum-electrodynamic (QED) correction term proportional to $\alpha (Z\alpha)^2$ which is calculated¹ to be 2.27(62) ppm. It is possible, however, to reduce the importance of nuclear structure if one compares the hfs in the 2s and 1s states. In particular the quantity $D_{21} \equiv (8\Delta\nu_2 - \Delta\nu_1)$, where $\Delta\nu_2$ and $\Delta\nu_1$ are the 2s and 1s hfs, has a contribution in hydrogen due to the $\alpha (Z\alpha)^2$ term of about 2%, whereas the nuclear structure is not expected to contribute more than about 0.01%. The obvious drawback to this strategy is the requirement for two precision measurements.

In the case of ³He⁺, in a unique and pioneering experiment, Novick and Commins² measured $\Delta \nu_2$ = 1083.354 99(20) MHz and, by a novel ion-storage technique, Schuessler, Fortson, and Dehmelt³ measured $\Delta \nu_1$ = 8665.649 867(10) MHz. This yields D_{21} = 1.1901(16) MHz. One sees that the uncertainty in $\Delta \nu_2$ is responsible for virtually all the uncertainty in D_{21} . It was the goal of the present work to determine $\Delta \nu_2$ more accurately. Our experiment uses the same method of state selection and resonance detection as the work of No-