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Repeated creation and annihilation of positive and negative pulses of spatially trapped
particles are numerically observed as a result of nonlinear interactions in an extremely
unstable macroplasma. Positive and negative pulses are successively created at oppo-
site trapping boundaries and propagate toward each other with nearly constant speeds.
Each pair of pulses collides and disappears at the center. New pulses are generated at
shorter spacing, but propagate faster so that the time interval is nearly conserved.

In this Letter I wish to report a new phenome-
non found through a two-dimensional numerical
analysis of an unstable, magnetized macroplas-
ma, namely, that positive and negative pulses of
spatially trapped particles approach each other
from opposite directions and collide to annihilate.

It is well known that trapped particles in a mi-
croplasma play an important role in the nonlin-
ear evolution of an externally applied wave and
of spontaneously excited unstable waves. Sim-
ilarly it has recently been pointed out that the
Hall motion induced by wave electric fields in a
magnetized macroplasma (spatially trapped mo-
tion) also plays the leading role in the evolution
of the waves. ' Figure 1 illustrates electron tra-
jectories in the phase space of a microplasma
(top) and the Hall trajectories in the coordinate
space perpendicular to the magnetic field (bot-
tom) which are bounded in the direction perpen-
dicular to the wave propagation direction. From
this figure one may find points of similarity be-
tween the trapping motions in a microplasma and
macroplasma, although the macroplasma has one
isolated trapping region (vortex) for one wave-
length but the macroplasma has two vortices.

I use a right-handed coordinate system in which
a dc magnetic field B and a dc electric field E
are applied along the positive x axis and the posi-
tive z axis, respectively. I treat a case in which
electrons are almost collision free but ions are
heavily dragged by neutrals. Consequently, only
electrons drift toward the positive y axis. If the
electron drift velocity exceeds the ion thermal
speed, a two-stream instability results. ' It is
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FIG. 1. Trapped particle trajectories in a potential
wave (middle) for a microplasma (top) and for a mag-
netized macroplasma (bottom) .

also known that a lower-frequency instability
(cross-field instability) occurs for a condition in
which the electron drift velocity is below the
threshold of the two-stream instability, if the
plasma density has a gradient in the direction
parallel to the applied electric field. '

It has been shown' that these and other electro-
static macroinstabilities (e.g. , the drift dissipa-
tive instability) are akin to one another and that
their nonlinear development may generally be
controlled by the spatially trapped particles. In
this Letter I take up the cross-field instability,
but the essential result may hold for other mac-
roinstabilities.
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The governing equations to be solved are

sn/et +v ~ nf„=0,

VJ ' g(0)~ —%~~) = 0,

(1)

(2)

to be in the form

N =no(z, t =0)

= &N,[2.25+0.25 tanhgzl(z/l —0.5)].

where nVt„z =+ /Lp V J p =
pH& 2 && V zp D ~V,n (n

=e, i), V~ is a gradient operator in the y-z plane,
and z is the unit vector of the magnetic field; n
is the electron density which is equal to the ion
density because of charge neutrality, and q is the
electric potential; p~, pH, and D~ are respec-
tively the transverse (Pedersen) mobility, the
Hall mobility, and the diffusion coefficient per-
pendicular to the magnetic field. I have assumed
that the variables do not change in the direction .

of the magnetic field.
The geometry is such that the plasma is non-

uniform along the z axis and bounded by two in-
finite planes put at z = 0 and z = l which are kept
at constant potentials, i.e. , y = 0 at z = 0 and y

Rt z =l but thRt the plasma ls uniform Rnd
unbounded in the x and y directions.

I Fourier transform (1) and (2) with respect to
y in the form

f(y, z, t)=Q f„(z,t)exp(ink y),
5=0

where f stands for either n or y and k corre-
sponds to the wave number of the linearly most
unstable mode. The Fourier-transformed equa-
tions are then transformed with respect to z to
difference equations with equal intervals (31
meshes). The set of the Fourier-difference equa-
tions is then integrated with respect to time t by
simply multiplying AT.4

The initial density distribution PP was chosen

The initial perturbation was such that n„(z, t = 0)
=sN~ sin(sz/E) for n =1 and 0 otherwise

Figure 2 is one numerical example that shows
how the electron density distribution along the z
axis, and hence the behavior of trapped particles,
is modified by growing wave fields. R denotes
the ratio of the applied electric field E (=qr, /E)
to the instability threshold, namely, a measure
of the instability strength, and ~l =0.24; e =0.01
and R = 10'. The time T is normalized by LB/E.
Note that R= 104 implies an extremely unstable
case.

As can be seen from Fig. 2, positive bumps
(pulses) of trapped particles are successively
born at the foot of the density hill and grow as
they climb up the hill, while negative pulses are
generated at the top of the hill (topside trapping
boundary) and come down the hill. It should be
stressed here that positive and negative pulses
meet at about the trapping center (z =I/2) and
then disappear. It should also be noted that young-
er generations (newly born pulses) are sharper
than older ones.

Trajectories of the peaks of positive and nega-
tive pulses are drawn in Fig. 3. The broken lines
imply that the peaks are not clearly identifiable
because of either small amplitudes or contamina-
tion of two pulses, so that it is not certain wheth-
er the trajectories are always straight or not.
From this figure it is seen that the speed of a
well-developed pulse, whether positive or nega-
tive, is constant and that spacing between two
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FIG. 2. Creation and annihilation of positive and neg-
ative pulse trains of trapped particles. Positive pulses
(b, c, and d) run from left to right, while negative
ones {b' and c'} take the reverse way.
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FIG. 3. Trajectories of positive {a, . . . , f} and nega-
tive (a', . . . , e') pulses.
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successive pulses becomes shorter and shorter;
however, the time interval is nearly conserved.
Accordingly, the collision time for a positive
pulse and a negative pulse to meet and annihilate
is also nearly constant. In other words, the
speeds of newly born pulse pairs seem to be con-
trolled so that the collision interval is rather
conserved. Calculation has been made for B
=200, 50, 10, and 5. The above conclusion has
been supported for R = 200 and 50. For R = 10
and 5, however, no conspicuous pulses are iden-
tified, but shocklike structures are formed near
the trapping boundaries as shown in Fig. 4.

In Fig. 5 are shown the time evolutions of the
amplitudes of the most unstable modes at z = 10l/
31, 12l/31, and 16l/31 (m= 10, 12, and 16 in the
figure). From this figure we may roughly say
that the instability is saturated at about T = 0.15.
It may be of value to note that many higher har-
monic waves are excited and the turbulent ener-
gy spectrum reaches approximately k '.' Simi-
lar calculations were performed by McDonald et
a/. ' who obtained 0"". Details of the turbulent
structure and the results for other parameters
(R = 5, 10, 50, and 200) will be published else-
where.

Let us now derive a model equation which may
represent the essential part of the observed re-
sult. The quasilinear equation governing the per-
turbed density distribution n, (z, t) can be given
by'

sn, (z) 6n, '(z) 3'n, (z)
Bf ez

where 4 = 2 (@He /)J~i)(E /B)No '= 2y/zNo and D ~
is the ambipolar diffusion coefficient across the
magnetic field, with p~ and p,~, the electron Hall
mobility and the ion transverse mobility, respec-
tively. Diffusion along the z axis is included be-
cause we are concerned with the variation along

the z axis.
The equation of the wave energy can be ex-

pressed as'

3n, '(z)/st = 2yn, '(z)+D 6'n„'(z)/sz', (4)

where y is the quasilinear growth rate in which
diffusion along the z axis is excluded, so that the
diffusion term along z is separately added on the
right-hand side. Although the diffusion is in gen-
eral negligible, it must be taken into account
when the fine structure along z is considered.

In addition, it is shown that when the wave amp-
litude grows sufficiently, the following relation
roughly holds':

Bn,'(z )/sz ~ —6n„'(z )/3z. (5)

Differentiating (3) once with respect to t, sub-
stituting (3) and (4), and making use of (5), I ob-
tain

2 2 3 2 4n 2~ n 2~ n en
(6)

6~ ' 3( 6(' sg4

where p =D«/2yl' and v =D~'t, /2yl4. In deriving
(&) I have used the approximation that 6'n, /6f'
~ 2y6n, /6f which can be obtained from (3) and (4)
by neglecting the diffusion terms.

In the present numerical case B =104, zl =0.24,
p = 10 ', and therefore pv' l/z2 is approximately
10 ". Since I n, l ~0.1, we may omit the last term

10
I

R= ]O4

Introducing new dimensionless variables n, =n, (z)/
N„v=5/t„and $ =z/l, with t, =l/2AN, =~l/4y,
(6) can be reduced to
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FIG. 4. Shocklike density profile deformed by trapped
particles for a moderately unstable case (i.e., 8 =5).
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FIG. 5. Time evolution of the most unstable mode
(kg at z=lol/31 (m=10), 12l/31 (m=12), and 16l/31
(m~16) for A ~104.
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in (7). Thus, we obtain

Bv ' 8] Bg' (8)

n, = 3c cos'[( —2(p,„,/p»)cT]/4(2P) (10)

where another normalized time T (=t&/B/) is
used to make it possible to compare with numer-
ical results in which this normalized time is
used (see for example Fig. 8). From (10) it can
be seen that the pulse speed is proportional to its
amplitude and given by 2(pH, /p«)c and that the
pulse interval is about 4s(2p) 'l. Since (p,„,/p«)
was chosen to be 25 in the numerical case and c
(relative density wave amplitude) is about 0.1,
the pulse speed is expected to be 5l which is in

From (8) we immediately notice that this ec{ua-
tion is similar to the Korteweg-de Vries (kdV)
equation' in a sense but differs in that the dis-
persion term is nonlinea~. This difference is es-
sential and significant.

In the KdV equation, positive and negative soli-
tons cannot coexist. However, (8) is conserved
for the replacement of n, with -n, and 7 (or g)
with —7 (or —$). Therefore, (8) allows negative
pulses which propagate in the opposite direction.
Another important difference is that invariants
are present with respect to odd powers of n, but
not with respect to even powers of n, . This char-
acter may be understabdable because n, is the
density. The total density is conserved but the
square of the total density should not be conserved
in general. From this fact it is possible that a
positive pulse of Ro and a negative pulse with the
same shape may annihilate when they encounter.

Now we seek a steady solution of (8) in the form
R,(),v) =go($ -cv), where c is a constant. Inte-
grating twice with respect to v)= $ cv—yie-lds

(BSo/Bv))'=(8P) 'n, (g8c —n, ).

Equation (9) is solved to give

good agreement with the observed pulse speeds
(Fig. 8). The pulse distance becomes about 0.06l
which is also in agreement with numerical re-
sults (see Fig. 2).

It may be of value to note that physically the
pulse speed is the electron Hall speed driven by
the wave electric field.
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