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TABLE I. The percentages of the energy-weighted sum rule.

Ex

(MeV) El, T=1 E2, T=0 E2, T=1 E3, T=0 E4, T=0 E5, T=0 E6, T=0 ET, T=0
0-3.5 5 10 8 2

3.5—5 4 3

5-10 3 14 39 34 26
10-15 25 65 47 38
15-20 50 20 11 10 12 37 29 21
20-25 10 7 13 24 10 35 35 29
25-30 16 20 12 26 20 46

multipole strength is fragmented in accord with
recent theoretical results.®" !
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puter center of Tohoku University was used for
the calculation.
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Mirror y Decays in '3C and 3N+
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We have measured the y-ray branching ratios of the lowest T =2 levels in 13C and 13N,
and the absolute strength of the y, transition in 13N. The mirror electromagnetic selec-
tion rule is obeyed by the M1 (y, and v,) transitions. However the E1 (y,) transitions
exhibit a surprisingly large charge asymmetry. Charge-dependent differences in the
radial wave functions do not account for a similar asymmetry in strong T=4—~T=3E1

transitions in mass 13.

Isovector y-ray decays between corresponding.
levels of mirror nuclei are expected to be of
equal strength.’ This follows from two assump-
tions—that the nuclear levels involved obey
charge symmetry, and that the electromagnetic
current contains only isoscalar and isovector
components. Hence a precise experimental com-
parison of the reduced strengths of mirror AT=1
transitions can reveal asymmetries caused either
by a failure of exact symmetry in the nuclear
wave functions, or by the existence of an exotic
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(isotensor) electromagnetic current.

The mirror selection rule for AT=1 electro-
magnetic transitions is not well verified.? Blin-
Stoyle has used the 7= 32— T'=4 M1 transitions in
13C and 3N to derive an upper limit of ~10% for
the ratio of the isotensor to isovector amplitudes.®
We have improved upon previous data*'® concern-
ing the mirror AT=1 y decays in mass 13 by
significantly increasing the precision of the com-
parison of the ground-state and second-excited-
state M1 transition strengths. We have also ex-
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tended the comparison to the E1 transitions to
the first excited states and the E2 component of
the ground-state transitions.

The absolute strength of the j, transition from
the T=% level in '*N was determined by combin-
ing a '2C(p, 7,)"°N resonance-yield measurement
of I', T, /T with a previous measurement® of
r,,/T. The *C(p, %)'°N resonance-yield data
shown in Fig. 1 were obtained by bombarding a
1.7-mg/cm? natural carbon target with a proton
beam from the University of Washington FN tan-
dem Van de Graaff accelerator. y rays were de-
tected at 6,=125° in a 25-cm X25-cm-diam Nal
spectrometer with a plastic anticoincidence
shield. The solid curve shown in Fig. 1is a
Monte Carlo calculation? of the resonance yield
that includes the discontinuous energy loss of
protons in the carbon targets.

Since the angular distribution of the decay y
rays from an isolated J= % level must have the
form a,P,(cos6) + a,P,(cosf), the step in the total
thick-target resonance yield can be obtained from
data taken at 6., =125° where P,(cosd) vanishes.
The absolute photopeak efficiency of the detector
for 15.1-MeV v rays was determined by use of a
coincidence observation of tagged y rays from
the decay of the 15.1-MeV level in '2C, which was
assumed to have I‘m/I‘=(88.2i2.1)%.8'9 This J
=1 level was populated in the reaction °B(°He,
p7)*2C with protons detected at 0° so that the y-
ray angular distribution was also of the form
a,'Py(cosb) +a,'P,(cos6). The *C(p, y,)**N reso-
nance-yield measurement and the calibration
were done consecutively with use of the same ex-
perimental arrangement. Only the target and
beam were changed.
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FIG. 1. Resonance yield for the reaction 12C(p,yo)“’N
at 6,=125°. Only statistical errors are shown. There
is an additional uncertainty of +3% in the Nal efficien-
cy. The energy scale comes from the nominal accel~
erator calibration.

On the basis of the ‘plateau” region of the reso-
nance-yield curve (delineated by vertical bars in
Fig. 1), the step in the total thick-target yield
corresponds to (6.83 +0.22)X10 ™ 4’s per inci-
dent proton for a pure natural carbon target of
infinite thickness. The precision of our result
makes it useful as a calibration standard for ab-
solute y-ray detection efficiencies. This yield
corresponds to I', T, /T'=5.79+0.20 eV, on the
basis of a stopping power of 30.75+0.31 keV /(mg/
cm?).’® Combining this result with a previous
measurement® of ', /T yields 1"70(13N) =24,5
+1.5 eV). This should be compared with I‘Yo(”C)
=23.3+2.7 eV." Our value of I, should not be
significantly affected by interference between the
resonance and the background since 0,/0,~230
and E1 or E2 backgrounds cannot produce inter-
ference in g,. Our data at 125° measure q, since
the resonance angular distribution was found to
have a negligible a, coefficient.

From C(p, 1,)**N angular-distribution data
taken below, above, and on the *N(7'= %) reso-
nance, we deduce a value of 0.013 +0.005 for the
E2/M1 intensity ratio in the ground-state transi-
tion. This differs from the value of 0.026 +0.005
for the corresponding transition in 3C (Ref. 11).

The relative transition strengths to the first
and second excited states were obtained from a
coincidence measurement using the reactions
B(*He, p7)*3C and 'B(°*He, #y)'*N. The protons
or neutrons were detected at 0° and the y rays
were detected at 0,=125°. The data were record-
ed on magnetic tape event by event and sorted
later to obtain the final y-ray spectra shown in
Fig. 2. The smooth curves are least-squares fits
using the 15.1-MeV line shape obtained from the
19B(*He, p¥)'*C data. Our results for the relative
transition strengths in !3C and '*N are summa-
rized in Table I. In N, the group labeled 1,
could contain an unresolved contribution from 5
rays following isospin-forbidden proton decay to
'2C(12.71), and hence the T'=3— (3, %) strength in
13N is given in Table I only as an upper limit.
The transition labeled y, is expected to go pri-
marily to the 3~ level rather than to the nearby
$*level. In !N these transitions are unresolved,
while in '3C the 170-keV energy separation allows
us to put an upper limit of 20% on the 2* contri-
bution. The presence of a small E1 contribution
would not substantially alter our conclusions
since E1 and M1 transition rates have the same
energy dependence. Systematic errors in I
and I“72 introduced by the tails of the unbound
levels in *N are smaller than our statistical un-
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FIG. 2. y-ray spectra from the decay of the T =2
levels in 3C and ®N. The smooth curves are least-
squares—fitted line shapes.

certainties and have been neglected.

For the purpose of comparing the reduced tran-
sition strengths in '*C and !N it is convenient to
define the asymmetry parameter &=B(*3C)/B(**N)

-~ 1, which is shown in Table I. The precision of
our comparison may be extended for the M1 tran-
sitions by defining the relative asymmetry A
=B, (*C)B , (*N)/B, (**C)B »(*N) -1, since A

is independent of the absolute strengths.

Since the M1 operator contains no radial depen-
dence in the long-wavelength limit, and the v,
and 9, transitions are strong, the asymmetries
for these transitions provide a good opportunity
to examine the structure of the electromagnetic
current itself. Defining A, and A, as the reduced
isotensor and isovector transition amplitudes,
respectively, the resulting “isotensor” asym-
metries are given by 6=4($)'/24,/A, and A
=8(3)"/?4, where A = %[Az/A1('}’2) ‘Az/A1(7’o)]- Up-
per limits for A,/A, and 4 are given in Table I.

Table I also displays the asymmetries expected
from a shell-model calculation of Coulomb and
electromagnetic spin-orbit effects,’® and from a
hypothetical isotensor electromagnetic current.*
The asymmetries expected from both sources
are smaller than our experimental upper limits.
Thus, even though the experimental results have
placed a good upper limit on the reduced isoten-
sor matrix element A,, the corresponding limit
for the isotensor current is not very stringent
since, even if the AT=2 current exists, its ef-
fects in nuclei are highly suppressed.

In contrast to the M1 transitions, surprisingly
large asymmetries are seen in the E1 transitions

TABLE I. Y-transition strengths in 3¢ and ®N. Reduced transition strengths are in Weisskopf units.

E,(37,1) E (37, 1) r.(ev) B(W.u.) 5(exp.) 8(theory)  [a,/A|

13, 15,1115 o 575 0.0 (170 1/5 22.7i2.63( 1 0.318 % 0.056 1 ) 0.0740.15 0.01°% 0.065
By 15.0703/2753/2) 5l (1/27,1/2) gt e (o 0.342+0.021 -0.07+0. -o.out <0
igc 5010 0m 50y 90 (1/p- 170 0.59+ o.11‘(‘E2) 0.51 £0.10 1oy -

N 15.07 ’ 0.0 1/2)  olszio.ie 0.28 +0.11 0.6
}gc 151100 5y 3468050 17y 18.2&2.hb(M1) 0.587£0.077 () 0.0b £0.1h 0.005° ‘< 0.058

N - 15.07 ’ 3,51 ’ 19.6 + 14D 0.613 0.0k cOFEL. : :
156 ISl sy 30910 sy b1 L A RLL) X107y oo

N 15.07 , 2.37 ’ <2.82£0.30 .69+ 0.39) x 10~3 -83£0.
13

C 3,09 + 0.0 - 04O + 0,005
By ol (1/251/2) gl (1/27,1/2) 13 50.01d (EL) -0.69+0.05

A =0.03£0.07%  -0.007° & < 0.0168

2Ref. 11. in,

bThis may contain a small unresolved component (see
text).

°Ref. 12.

dWeigh’ced average from Ref. 13 and references there-
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€Isotensor, Ref, 14.
f Charge dependent, shell model, Ref, 15.
gSee text,
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from the 7=32 levels in 3C and !*N. There is
also some evidence for a large asymmetry in the
E2 component of the ground-state transitions.
That these asymmetries are probably not due to
a AT=2 electromagnetic current can be seen by
examining the mirror E1 decays involving the
ground and first two excited states in mass 13.
Since the E1 operator is a pure isovector in the
long-wavelength limit, corresponding T=3—T=3
E1 transitions in *C and **N should have the same
strength if the isospin symmetry were exact. In
this case a AT =2 current cannot produce an
asymmetry because it does not connect T=1%lev-
- els. Effects due to isospin mixing should be
negligible for the T=3% decays. Using the known
isospin-forbidden particle decay widths,® we esti-
mate that effects of isospin mixing on the 7'= 3

v decays are also negligible. Since large asym-
metries are observed in T=%- T=3 E1 decays

in mass 131213 (see Table I), we must conclude
that a substantial breakdown of mirror symmetry
has occurred. We believe that the asymmetries
in the T=2-T=% E1 (and E2) transitions are
likewise due to a violation of strict mirror sym-
metry.

Charge asymmetries are also observed in mir-
ror Gamow-Teller g8 decays'® and mirror pickup
reactions.!” These asymmetries are attributed
to differences in the radial wave functions caused
by differences in the binding energies. To deter-
mine whether such binding-energy effects can ex-
plain the E1 asymmetries in mass 13 we have ex-
amined the E1 decays of the lowest J", T=3", 3
levels in '*C and '3N. One would expect that bind-
ing-energy effects would be especially pronounced
in this case since they produce a Thomas-Ehrman
shift in the 3* levels of ~0.7 MeV. These transi-
tions are unusally strong, so that small changes
in interfering components of the transition matrix
elements should not produce large asymmetries.

The binding energy for the E1 widths was cal-
culated by use of a simple one-body model follow-
ing the ideas used to investigate the g asymme-
try in mass 12.'® Separate charge-independent
Woods-Saxon wells (plus a Coulomb potential)
were used to generate radial wave functions for
the ground and first excited states in *C and *N
with the correct binding energies. Using the
same spectroscopic factors®?® for '*C and N, we
calculate B(**C)=B(**N)=0.16 Weiskopf units.

Thus simple binding-energy effects of this kind
do not explain the large charge asymmetry in
the E1 transitions. Apparently the data require
a significant degree of charge-dependent configu-
ration mixing. The origin of this unexpectedly
large degree of mixing is an important and unre-
solved issue.
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