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It is shown that the probability for the magnitude of the internal field IHI of a spin-glass
is proportional to H~dlHI for very small internal fields. If one assumes that the spine are
quantized in the magnitude of the field the low-temperature specific heat is proportional to
T - in disagreement with the experimentally measured linear dependence.

Recent experiments by Fiory et al. ' on polar-
ized p, mesons slowed down in spin-glasses (di-
lute magnetic impurities distributed in a nonmag-
netic metal host are referred to as spin-glasses)
give a measure of the internal field distribution
of the spin-glass system. It is also believed that
the distribution of the internal fields for small
fields may determine the origin of the excess
low-temperature specific heat of spin-glasses.
Experimentally it was found by Zimmerman and
Hoare' that the low-temperature specific heat is
linear in temperature T and independent of the
fractional impurity concentration c for sufficient-
ly low temperatures. Thus it is of considerable
interest to determine the probability distribution
of the internal fields for spin-glasses.

The purpose of this Letter is to obtain the self-
consistent probability distribution of the magni-
tude of the molecular field IHI as well as the dis-
tribution of the vector field H experienced by the
spins in the spin-glass system. We find that for
both of these the probability distribution P(H) is
zero for zero field and has, for both cases, the
form P(I H l)d I HI = constH'dH, where H is the mag-
nitude of the field. Thus if it is assumed that the
spins are quantized in the magnitude of the field
the molecular field model gives P(IHI) = 0 for
IHI =0 and hence does not explain the low-T be-
havior of spin-glasses. The specific heat C„
arising from the model still scales according to
the relationship C„cccf(T/c). It is also shown
that the previous treatment of one of the authors
on this subject has an incorrect assumption in it.

Starting with the expression for the total molec-
ular field vector Hr (internal plus external field)
at an arbitrary spin located at the origin 0, we
have

Hr =Ho+He~

where H,~ is the externally applied field and

I H, l
= [(Pv„m,u; + H, )']'t '. (4)

The calculation of the probability distribution
is performed in the limit H,~- 0. We use the
statistical model of Margenau~ in the form devel-
oped by Klein, ' whose method we closely follow,
to obtain P(H, ), where H, is the vector internal
field experienced by a spin placed at an arbitrary
origin 0. Thus

I (H.) = fP, (R)C(H. -P v.,m, u, )d'r„,

where P, (R) =P(r„r„.. . , r„) is the N-particle
distribution function of the spin coordinates (in-
dicated by the subscript c), d'r„ is a 3N dimen-
sional integral over the 3N position coordinates
of the impurities.

Similarly the formal expression for the prob-
ability distribution of the magnitude of the field
H is given by'

where e„. is the Ruderman-Kittel-Kasuya- Yosida'
(RKKY) potential assumed in this paper to have
the form v;, =+a/r;, .', each sign having a prob-
ability of —,. Writing the RKKY potential in this
form will allow. us to evaluate our integrals ex-
actly without changing the result obtained by us-
ing the full RKKY potential. m& in Eq. (2) is the
Brillouin function of the spin at site j in an effec-
tive field H, H,. and u,. are random variables
whose probability distribution has to be deter-
mined self-consistently. u& is a unit vector in
the direction of the vector field at site j since
the direction of H,. is assumed to be the direction
of quantization of the spin at site j. H,. is

Hj Z' ikmkuk ' (3)

The magnitude of the field IH, I at site o is ob-
tained from Eels. (I) and (2),

H, =Pv, tm, (Hi)u, , P(IHI) = JP.(R)f(JI —
I Ev.im;ural) d'rs.
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Rewriting Eq. (5) we obtain

P(H. ) = (2m) 'fd'p exp(i|I H, )fP, (R)d'r„g exp(-iv„m, p u,.).

Note that m& in the above equation is a function of Il, , where H, is .given by Eq. (3).
For convenience we rewrite Eq. (7) as follows,

P(H ) =(2w) f exp(ip H, )d'p fP, (R)d'r„ II, fexp(iv„m, p u, )6(H, g—v,~m~u~)d'H, (8)

That Eq. (8) is identical with Eq. (7) can be seen by performing the integration over d H,
Equation (8) expresses the probability distribution of the vector field at site o in terms of the N ran-

dom potentials v„at sites j (j = 1 to N) and the internal fields at all other (than the origin) sites in the
system. In order to get a solution to Eq. (8) we will have to make an approximation. Let

D, (H,.) = 5(H,. -Qv, ~m~ u„). (9)

We note that Eq. (8) contains the product of N such D, 's. However, once the N coordinates of the spins
are fixed, so are all the x„.'s and the D,.'s. Now consider what happens when we change the position of
a single spin, say spin 1 with position z,' to a new position z, ', where the subscript denotes the parti-
cle and the superscript denotes the position. As the position was changed from y,'to y, ' all the D,. 's
take on new (fixed) values. Thus as the positions of all the particles are changed by allowing them to
take various random values, all the D,.'s change accordingly and for every set of new configurations
the D, 's take o.n new fixed values. We now factor the D, 's, i.e. , we assume that each D, is indepen-
dent of every other D, [thereby giving the system N(N- 1) new degrees of freedom] and replace each
D& by its average over all coordinates [thereby reducing the number of degrees of freedom by N(N- 1)].
We call this approximation the mean random field (MRF) approximation discussed previously in some
detail. "' In the MRF approximation we thus have

D, fP, (R)6(H, —Qvq~m, ul )d'rN=P(H, ), . (10)

where the identity holds from the definition Eq. (5). Assuming next that the positions of all the parti-
cles are randomly and uniformly and independently distributed throughout the volume of the solid V,
then P, (R) = V ". Substituting Eq. (10) into Eq. (8) and using the latter assumption gives

P(H) = (2v) 'f exp(ip H, )d'p[(1/V) ff exp(-iv„m, p u,.)P(H&)d'H, . d'r, &]".

(12)

We thus find that the introduction of the MRF approximation allows us to factor the j-fold product in
Eq. (8) into a single integral raised to the Nth power. Equation (11) gives the probability distribution
of the vector field H, at site 0 in terms of the probability distribution of the field at site j. As a self-
consistency condition we now require that P(H) shall be site independent, and thus we drop the sub-
scripts o and j. All that is left now is to solve the integral equation for P(H) given in Eq. (11). This
we do by using the following trick. ' Let

P(H) =(2v) 'fe""d'v[1 V'(p)/V]",-
where n, is the number of sites per unit cell, V' is

V'(p) =(8w/3) pa(m) f[(1—sins/z)/g2]dg =2pm2a(m)/3, (13)

&m) = fm(H)P(H) d'II.

Equation (12) can be readily integrated to give

P(H) = m-'~/(~' a+')',

where b, =m'an, c(m)/3. For later use it is convenient to exhibit the quantity P(H) d'H. We have

P(H) d H = m"'[6/(b, '+H') ]H'dli sin8de dy.

Equation (16) shows that the probability for small vector fields is proportional to H'dH.

(14)

(15)

(16)
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We next obtain the probability distribution for the magnitude of the field II, where the formal expres-
sion for P(H) is given in Eq. (6). We could go through the same steps as was done up till now to obtain
P(H), but instead we shall obtain P(P) by a shorter method. We note that'

6(H —v„.m,.u,.) = 6(H —igv„rn, l,.i)&(0 —6')6(y —y')(H'sine) '. (17)

Substituting the right-hand side of Eq. . (1V) into Eq.
integrating over 0 and y gives

P{iHi)dH =I (H)4~H'dH = (4/~)&(~'+H''I 'H'dH.

Equations (16) and (18) are the central results of
this paper. In both equations we find that the
probability for small fields is proportional to
II'dII. The probability density for both the vec-
tor field and the magnitude of the field is zero
for zero fields. An argument to this effect has
been presented previously by Marshall' and An-
derson, ' however it has not been shown before.

Now we present a brief discussion of the pres-
ent state of theoretical understanding of the mo-
lecular-field model in spin-glasses. The previ-
ous calculations'"" were done using a molecular-
field approximation and the Ising model neglect-
ing all correlations. These Ising calculations
gave the experimentally observed low-T specific
heat. The calculations presented in this paper
are also done in the molecular-field approxima-
tion and also neglect correlations. The present
calculations are however believed to represent
the correct physical picture. Thus we come to
the conclusion that if (a) the spins are quantized
in the magnitude of the field (the direction of
quantization being the direction of the vector
field) and (b) there is no preferred direction of
spin orientation because of some internal con-
straint, the molecular-field model with corre-
lations neglected does not explain the low-tem-
perature specific heat of spin-glasses. There-
fore, one must likely include correlations or do
a more complete quantum mechanical calculation
of the partition function to obtain the low-temper-
ature specific heat. A recent quantum mechani-
cal calculation" of the partition function follow-
ing the lines developed by Edwards and Anderson"
gives a specific heat linear in T, but the predict-
ed concentration dependence of the specific heat
is in disagreement with experiment.

Finally we comment on some previous work'4

of one of the authors on this subject. In the work
of Ref. 14, the apparently incorrect assumption
was made that the magnitude of the field at site o

(5), multiplying the result by H'dH sin8 d8dp, and

is given by the expression IH, I
= lgv„mtu, u&l

rather than the correct value given by Eq. (4) of
the present paper. This assumption has forced
the results of Ref. 14 to be Ising-like, and gave
the incorrect Ising result, rather than the pres-
ent Eq. (18).

We wish to thank Professor Joel L. Lebowitz
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