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Renormalization-group recursion relations are used to calculate to order e=4-—d the
free-energy, ordering-susceptibility, and magnetization-crossover scaling functions for
tricritical points in isotropic z-vector models. The equations of state describe critical
and tricritical behavior in both ordered and disordered phases.

Much progress has resulted from the applica-
tion of renormalization-group theory' to discuss
ordinary critical points. In particular, these
ideas have led to explicit calculations of critical
exponents’ and scaling functions® within the
framework of the epsilon (€ =4 — d) expansion.
More complicated physical systems exhibiting
multicritical behavior® have also been success-
fully analyzed. For example, critical exponents
have been found characterizing tricritical sys-
tems,* as well as systems with spin-flop transi-
tions.®* However, little analytical progress has
been made in calculating explicit crossover scal-
ing functions describing multicritical behavior.?
In this note, we report calculations to first order
in €=4 - d for a continuous classical spin model*
of tricritical points.® The calculations give a
description of the crossover from tricritical to
lambda-line critical behavior. The tricritical
exponents appearing in the theory are exact be-
tween three and four dimensions, while the criti-
cal-line exponents are correct to first order in
€. The theory accounts for the experimentally
observed kink in the temperature-composition
phase diagram for He’-He* mixtures,” as well as
in the analogous phase diagrams for the meta-
magnet FeCl,.?

The method of calculation (which will be de-
scribed briefly) allows scaling functions to be
calculated directly from renormalization-group
recursion relations. Riedel and Wegner® have
applied a renormalization~-group matching pro-
cedure to calculate the ordering susceptibility
for certain somewhat ad hoc “recursion-relation
models” of crossover behavior. We employ a
similar approach here to calculate ordering-sus-
ceptibility, free-energy, and spontaneous-mag-
netization crossover scaling functions using exact
recursion relations generated by the € expansion.
Such recursion relations exist for a variety of
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bicritical® and other multicritical crossover prob-
lems.® The procedure is more flexible than a
conventional field-theoretic treatment,’® and
avoids the problems of exponentiating logarithms
inherent in a direct Feynman graph approach.®

We consider the Landau-Ginzburg-Wilson
Hamiltonian for isotropic n-component spins in
d dimensions with S° interactions, namely,

H=—30/kyT
=[dr [3(v82+37| 82 +u| §|* +v| §|°] , (1)

where
- - n - n,d
S=S(R), [S|*=} Siz’ (V8= 25 (v, Sj)z ’
i=1 i,§=1

and the components S, vary between £, We
take v to be positive for thermodynamic stability.
Riedel and Wegner® have argued heuristically
that such a model could describe the tricritical
point in *He-*He mixtures. They proposed that
the changeover from tricritical to lambda-line
critical behavior corresponded to crossover
Hamiltonian flows from a Gaussian to an n-com-
ponent Heisenberg fixed point. This picture is
borne out by explicit calculations near four di-
mensions,’ and results in mean-field-theory tri-
critical exponents in three dimensions.* Here »
and u are taken to be analytic functions of the
chemical potential difference A =y, - u, and the
temperature 7. Nelson and Fisher'' have shown
that a model for metamagnetic tricritical points
can be collapsed into a Hamiltonian like (1), with
¥ and « now functions of magnetic field and tem-
perature. The Hamiltonian (1) has been treated
in the spherical-model limit (z —«) by Amit and
De Dominicis,' and, more recently, by Emery."
It is useful to present our results in the con-
text of phenomenological crossover scaling the-
ories,'*!® supplemented by renormalization-group
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ideas.* The scaling description is expected to
simplify when written in terms of appropriate lin-
ear combinations {, g, and w of the basic param-
eters 7, #, and v appearing in (1).* In terms of
these linear scaling fields, the singular part of
tricritical free energy, for example, can be writ-
ten near the tricritical fixed point (which is given
by t=g=w=0 for 3<d<4) as

Fy, u,v)ztz-aé(g/t¢, wt{%’), (2)

where « is the tricritical specific-heat index,
and ¢=¢, and ¢,=—| ¢,| are crossover expo-
nents. The conjecture of Riedel and Wegner,*
that the Gaussian fixed point describes tricriti-
cal phenomena above three dimensions, leads to
the formal scaling exponent predictions «a =%e,
¢=3€, and | ¢,| =1 - €. Although the exponents

J

By(x)xx " 0/[ A, + B, (x VP~ 2" VO) s, | 4 VO

—95-1/‘1"2—“] ,

appearing in the formal scaling expression (2)
are dimensionality dependent, singularities in
®(x, y) when d = 3 cause many (but not all) “ob-
served” tricritical indices to stick at their mean-
field values as expected.* This phenomenon is
related to the breakdown of hyperscaling above
Jour dimensions (see Fisher,'® and footnote 8 of
Wegner and Riedel.* Usually one assumes'? that
the scaling function ®(x, y) can be expanded in
powers of y = wt! %! , which becomes small as the
tricritical point is approached, yielding

B(x, 9) = B,(x) +y(82/3y), o+ O(y°), (3)
with ®,(x)=®(x, 0). If the lambda-line singulari-
ties are to be described properly, &,(x) should
have a singularity at, say, #, as x— ®*, of the
form™

4)

where & is the critical-line specific-heat index. This form differs slightly from that usually employed
as it is designed to behave properly in the limit £~ . [The singularity in &,(x) is indeed located at %
= for tricritical points to O(e); see Nicoll ef al.'® and below. If the critical hypersurface is to have
a nonsingular shape, it is straightforward to show that % should be strictly equal to inifinity.]

Our calculations are carried out to lowest order in € =4 —d, assuming that », «, and v are small.

When « is positive, an expansion like (3) is possible, and the irrelevant variable v may be set equal to
zero to obtain the leading behavior of the scaling functions. We find that the leading singular contribu-
tion to the free-energy density may be expressed in terms of the scaling field £ =y + (n + 2)u/47? as

F(r, u,v)=[=nt?/16u(4 —n)][ @+ "7 +®_ 1] + min {3t ,M? + u, M*} , (5)

where
Q=Q(*)=1+nm+8u(e"" - 1)2n%, (6)

and /* is determined by the condition |# zle?* =1. The quantity in braces must be minimized with re-
spect to M, and the value M =M, thus obtained is the spontaneous magnetization. The ordering suscep-
tibility is just the curvature about the minimum of the quantity in brackets. When (1) is viewed as a
model for *He-“He mixtures (»=2), the equation of the lambda line is #=0,' and the tricritical point is
(t,u)=(0,0). Inthe context of tricritical scaling,” £=0 denotes the scaling axis tangent to the tricriti-
cal point, while #=0 gives a second optimal scaling axis (g =u).

For fixed €>0 and small / and u, the results for the free energy, magnetization, and susceptibility
may all be written in crossover scaling form. To see this, we note first that the equation determining
I* may be written as

tezz* =[1 + (n+ S)ueezt /21T2€]("+2)/(n+8) (7)
near the tricritical point. Equation (7) defines a quantity e’"=L(¢,u) for every ¢ and u. It is not hard
to show that L(¢, u) satisfies a homogeneity relation, namely, L(¢, u)=bL(b%,bu)=|t|"2¢(u/t /?),
with ¢(x)=L(1, x). The behavior of ¢(x) for small x (tricritical regime) and large x (critical regime)
may be determined analytically from (7). When (7) is solved numerically for a given €, it provides an
interpolation between critical and tricritical behavior. To leading order, both the large-z and small-
z behaviors are correctly given by ¢(z)=[1+ (n+8)z/2n%]"*2¥2("+8)  yarijous crossover scaling func-
tions follow immediately; for example, the scaling function &,(x) in the disordered phase for the free
energy is

tp=tQ (D) oot

-n j<1+(n+8)x{¢(x)]e><4-n>/(n+s) 1,

16(4 —n)x | 2n%€ -1 ®

éo(x) =
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which has the behavior (4), with x=, as x —~ %.
If we first set € =0, solving the equation |¢,]e2""
=1 produces a series of logarithmic corrections
to critical behavior on the lambda line discussed
by Larkin and Khmel’nitskii®® and by Brézin.?'

When « is negative, the full scaling function
®(x, y) for the free energy (and other thermody-
namic quantities as well) can no longer be ex-
panded in its second argument, because a posi-
tive v is now necessary to stabilize the Hamil-
tonian (this is also true in a simple Landau the-
ory). In this sense, v is analogous to the four-
spin coupling constant above four dimensions
(when < 0), which Fisher has called a “danger-
ous irrelevant variable.” !* We note, however,
that a direct graphical analysis of (1) in three
dimensions is possible far from the lambda line,
the region amenable to such analysis including
the first-order line.?? The graphical analysis
avoids approximations associated with an € ex-
pansion and is thus complementary to our calcu-
lations with regard to the approach to the lambda
line when u is positive. Nevertheless, a unified
description of the scaling function associated
with tricritical points remains an intriguing prob-
lem. By solving the appropriate renormalization-
group recursion relations in an € expansion, it
is possible to construct a parabolic first-order
surface® corresponding to a separating trajectory
in Hamiltonian space. Analysis shows® that the
temperature-~composition phase diagram devel-
ops a kink at the tricritical point as e~ 1.%°
Emery"® has produced this kink in the spherical-
model limit (z— ).

The basic result (5) for the free energy was
derived directly from renormalization-group re-
cursion relations. The basic principles involved
are fairly simple. (A detailed account of our in-
vestigations, including a discussion of wave-vec-
tor—dependent susceptibilities and the effects of
an ordering field, will be published elsewhere.?®)
We start by solving the differential recursion re-
lations for » and « which, to O(e), are*

dr Au du Bu?

dl= v 1+7° El—= u_(1+,r)2, 9)

where A=(n+2)/27% and B=(n+8)/27%. The solu-
tions to leading orders in € and the coupling «
are
r(1)=t(1) = 3Au(l) +3Au(l) (1) In[1+£(1)], (10)
u(l)=u(0)e’/Q(1), (11)

180

where
(1) =1(0)e?/[Q(1)](n+2Vin+8) (12)

as may be verified by direct substitution into (9).
These solutions are valid provided that # is not
too large, so the integration of Eqs. (9) must be
stopped at a value I=0* determined by »(I*)~1.

Although the results above are valid only in the
disordered phase, a set of equations equivalent
to (9) appropriate to the ordered phase can easily
be derived by shifting the spin field in (1) by the
exact magnetization. These equations have sim-
ple solutions expressible in terms of the func-
tions »(1) and u(!) found in the disovdered phase.?®
The integrations must now be stopped when »(1*)
+12u(1*)e@" 9% 31 2 is of order unity, where M,
is the spontaneous magnetization.

Once the solutions of the recursion relations
are known, the free energy in the critical regime
can be related to a noncritical free energy far
from 7,. With each renormalization-group itera-
tion, a small spin-independent contribution to the
free energy is generated,?® and the free energy
can be calculated by summing these contributions
over many iterations.’® *® The free energy then
satisfies a modified homogeneity relation,?® name-
Iy,

F(r, u)=fol Go(l"e "4 qr’

+e MR (1), u)). (13)

The first term can be thought of as a line inte-
gral along a renormalization-group trajectory,
where the kernel G,(7) is just?®-2®

o) =(16m) ' n{In[1++(1)] - 5}

to leading order. We evaluate (13) by choosing
I=1* such that the correlation length associated
with the “partially dressed” parameters »(I*) and
u(l*) is of order unity, which corresponds to the
limit of validity of our solutions to the recursion
relations, Then, the free energy F(#(I*), u(I*))
can be calculated by a Landau theory with fluctua-
tion corrections. Carrying out this program and
extracting the leading behavior of the trajectory-
integral term leads to our basic result (5). The
prescriptions for obtaining the susceptibility and
spontaneous magnetization follow because we
have! My=e (12901 (1), and x =ex(1), to O(e),
which can be used in the same way as Eq. (13).°
When # is negative, a full description of the
tricritical behavior requires that (9) be replaced
by three coupled differential equations® describ-
ing the evolution under iteration of », u, and v.
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The equation for the first-order line may be ob-
tained by first integrating these equations until
the correlation length is of order unity, and then
applying the mean-field-theory criterion for a
first-order transition to the partially dressed
parameters.?

The techniques sketched above are quite gener-
al, and have proven useful in analyzing systems
with cubic interactions® and anisotropic spin
systems.*
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