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Problem of Brownian Motion in a Periodic Potential
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We calculate the frequency-dependent mobility of a classical Brownian particle moving
in a periodic potential. The problem is solved by applying a generalized version of Mori's
continued-fraction method. The results are then used to interpret the observed frequency-
dependent conductivity for the superionic conductor Agl.

In the classical theory of Brownian motion one
investigates the motion of a particle in a given
potential field under the influence of a stochastic
force. The fluctuating force is responsible for
energy dissipation of the moving particle via
damping and the detailed form of this damping is
connected with the spectrum of the random force
by the fluctuation-dissipation theorem. ' A partic-
ularly interesting model for Brownian motion is
the case of a one-dimensional sinusoidal poten-
tial. The corresponding Langevin equation is

2 Cl . 2'
mx+ mr& + m (u,

' —s in—x =f (t),2'

where rn is the mass of the particle, y is the
damping, and &ao'= (2n)'A/2ma', with A the bar-
rier height and a the lattice constant. We assume
that the stochastic force f(t) has a white power
spectrum, ' i.e., (f(t)f(0)) r = 2myKBT5(t), where
( ~ ~ )r denotes a thermal average and K, and
T are the Boltzmann constant and temperature,
respectively. Equation (1) can be viewed as de-
scribing a pendulum under the influence of a
random force if x denotes the angular deviation
from the equilibrium position. It also describes
fluctuations of the Josephson supercurrent through
a tunneling junction. " In that case (2n/a)x de-
notes the phase of the superconducting order pa-
rameter and m, (my) ', and m&uo' are the capaci-
tance, the resistance, and the coupling energy
of the tunnel contact. Equation (1) is a,iso the
simplest model for describing the diffusion of an
impurity atom in a crystal' and, more generally,
superionic conductance. ' In that case the x„=
= a(4 + n) (n being an integer) denote the different
equilibrium sites for the ions. It is particularly
the model description of superionic conductors
by Eq. (1) which has stimulated the present in-

vestigation and we will refer to this as well as
to possible extensions. Finally we point out that
Eq. (1) also occurs in the problems of Bloch-wall
motion, propagation in nerve fibers, Frohlich
superconductors, etc.

Our aim will be to derive from Eq. (1) an ex-
pression for the velocity-velocity correlation
function (x(t)x(0))r. It will enable us to compute
the frequency-dependent mobility p,(~) via

p, ((u) = (K,T) ' f "dte' '(x (t)X (0)),.
0

(2)

This mobility will contain oscillatory as well as
diffusive features. It is therefore expected to be
able to reproduce the physics of superionic con-
ductors. The comparison with other model cal-
culations can be readily made, "

There exist some analytic results for p(&v=0, T)
in certain limiting cases. In the low-temperature
limit (KBT«A) one obtains'

p(0 T)= 'a(27tmK, T) ' ' —'

where I, (v) denote Bessel functions. Finally, in
the limit of large damping (zero capacitance in
the Josephson-noise problem), we have'

p(0, T) = (my) ' [I,'(v)j (5)

The physical region of the parameters for super-
ionic conductors (A-0.1 eV, m -100m „„—100 cm ', y- 50 cm ') can be generally de-
scribed simply by Eq. (4). Furthermore, by
interpolating between the different cases one can
obtain good approximations for p(0) for any val-

tt(0, T) = (a'/27tKsT)[(~~ + ufo')' ' —~2] e '", (3)

where v =A/2K' T= mv, 'a'/4n'KBT. Furthermore
in the limit of vanishing damping (y- 0) one finds'
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ue of y and v.
In order to compute p. (~, T) we use a generalization for non-Hamiltonian systems' of the method em-

ployed by Mori for Hamiltonian systems. "" The continued fraction can be now written in the form"

(6)

+
i-(a+G„((u, T)

'

For the case of sinusoidal potential given by Eq.
(1) the terms y„and b, ~ (k =1, ..., n) up to n= 4

yo= —y y&=0 y2=-y a d & =0 + +2
xp, a, =(u, '(4p 'v ' —o. '), with a=I, (v)/&, (v)
and p= o ' —v ' —n. It is interesting to compare
the continued fraction (6) with the mobility of a
damped harmonic oscillator of frequency (4)p.

1 1
P(~)=

m —l (d + y + (do /( —I (d)

The expression (7) can be obviously obtained
from Eq. (6) in the limit of low temperature. At
finite temperatures, because of anharmonicity,
the frequency coo is replaced by an effective fre-
quency &u,

'= ar, 'I, (v)/Io(v). Furthermore other
terms are added to Eq. (7) in the continued-frac-
tion form (6) that can give rise to diffusion jp, (&u

=0)10]. The exact form of G„(&u, T) in Eq. (6)
is not needed here as we approximate it by g„(T)
in such a way that the static mobility p (0, T) is
reproduced correctly, i.e., in accordance with
the expressions given above. It turns out that
with g„(T) fixed in that way the convergence of
the continued-fraction method is good. Some
numerical results for Rep, (u) calculated up to
n= 4 are shown in Fig. 1. They correspond to
the parameters A = 0.1 eV, v = 1.28, a = 5 A, ,and
y= 50 cm '. The numbers associated to each line
in Fig'. 1 correspond to the point where the con-
tinued fraction was stopped. g(0) was derived
using Eq. (4) which is appropriate for the con-
sidered parameters.

Let us note, at this point, that a more pheno-
menological approach can be used to describe a
diffusing oscillator by introducing the memory-
function approximation. ' Instead of Eq. (1) we
have the following equation of motion:

mx +myx +m &u~' J M(t —t')x (t') dt' =f(t), (8)
0

, being an effective frequency and I the mem-
ory function given by

M(t —t') = exp [—(t —t')/T],

where T is the critical time between oscillatory
and diffusive behavior. This method provides
an expression for the frequency-dependent mo-
bility equal to the continued fraction with n = 2.
Therefore the continued-fraction method justi-
fies the phenomenological memory-function ap-
proach because the case n = 2 already gives a
good approximation to the more accurate results
obtained by including higher terms in the con-
tinued-fraction method (see Fig. 1).

Let us now extend the problem to include the
possibility that the Brownian particle interacts

. with its surroundings. In the simplest case the
particle creates a local lattice deformation which
follows the hopping motion. This resembles
closely the polaron picture. In a more realistic
case one should also include the interaction with
other Brownian particles, but this goes beyond
the simple single-particle picture we wish to

3—
p. ( ~)

p (0)
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FIG. 1. Numerical evaluation of Bep, (~) as given by
Eq. (6) up to n =4. The value of p(0) is derived using
Eq. (4) . The curve with n =2 practically corresponds to
the phenomenological memory-function approach (Bef.
5) ) Eq. (8)] that can be considered a reliable approxi-
mation because of the good convergence obtained using
the continued-fraction approach. The case n = 1, not
shown in the figure, corresponds simply to a Drude be-
havior.
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present here. If X denotes the center of the lat-
tice deformation, we replace Eq. (1) by

20 . 2p
7%x+ pB+x +Pl c00 —sin x

2p 0

a (nI)

(Qcm)

+mQ, '(x-X) =f(t), (10)

where 0, is a measure of the restoring force due
to the interaction with the surroundings. For X
we assume the following equation to hold:

mX +i'1~ M-Q, '(x -X) = Z(t).

Here I' and F(t) are the damping and the stochas-
tic force. Equations (10) and (11) could be solved
by the continued-fraction method extended to
many variables. " Here we consider instead the
simple phenomenological memory-functio n ap-
proach [see Eq. (8)] which in view of our findings
for Eq. (1) seems to us fully justified. The ex-
pression for the frequency-dependent mobility
becomes now

where

A = Qo' —uP —iuy —i&a coo'M(m),

1V ((d) = (—i(d + 1/T)

B= (m /llf )Q,
' —uF —i&@I".

(13)

(14)

In Fig. 2 v,„,(u) has been determined by a
Kramers-Kronig (KK) analysis of the observed
ref lectivity of AgI at T= 453'K. At frequencies
above - 20 cm ', o(&u) is qualitatively the same
as predicted by the model corresponding to Eq.
(1). The dotted part of o(~) below 10 cm ' de-
pends strongly on the extrapolation procedures
used in the KK analysis but agrees with transmis-
sion measurements by Funke and Jost." Their
results show further structure in o(~) at micro-
wave frequencies (- 1 cm '). The dashed curve
in Fig. (2) corresponds to Eq. (12) using the fol-
lowing parameters (in cm '): no=104, QO=15,
y=45, 1/w= 53, and (M/m)I'= 260. Note that the
simple polaron theory as represented by Eq. (12)
can in principle explain the decrease in v(&u) at
cu- 20 cm ' but it gives no further fine structure
below that value. To describe this structure one
then probably has to consider the detailed many-
body interactions.

In conclusion we have shown that a single-par-
ticle model that properly includes both oscilla-
tory and diffusive behavior [Eq. (1)] can be treat-
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FIG. 2. 0.{m) for the superionic conductor AgI as mea-
sured by Briiesch, Strassler, and Zeller (Ref. 5) (solid)
line), The dashed line represents the theoretical re-
sults from Eq. (12) . For the parameters used see the
text. The prefactor to go from p(co) to 0(cu) is the same
as in Ref. 5.

ed by means of the simple memory-function meth-
od. This model can describe most of the features
of the frequency-dependent mobility of a super-
ionic conductor (AgI). We remark that this ap-
proach is basically different from the one recent-
ly employed by Huberman and Sen' in which the
mobility is directly written as the sum of a dif-
fusion term and a distribution of oscillators.
Some of the features of the low-frequency region
(ms 20 cm ') can then be understood in terms of
interaction with the lattice. The next step would
be the extension of Eqs. (10) and (11) to include
the correlation between diffusing particles. This
work was initiated by many discussions with
Dr. P. Bruesch and Dr. H. R. Zeller. Especially
Dr. Zeller has contributed to the interpretation
of the experimental conductivity. We also would
like to thank Dr. Bruesch for making his experi-
mental results available to us before publication.
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Specific-heat and electrical-resistivity measurements in CeA13 below 0.2 K reveal enor. —

mous magnitudes of the linear specific-heat term C = 1'T (1'=1620 mJ mole/K ) and the T
term in p=AT (@=35pu cm/K). We conclude that the 4f electrons obey Fermi statis-
tics at low temperatures because of the formation of virtual bound 4f states.

In the intermetallic compound CeA1, both the
lattice parameters and the susceptibility at high
temperatures suggest that the Ce ion is in a 3+
state. The lack of magnetic order at low tem-
peratures is interpreted as being caused by a
partial admixture of the nonmagnetic 4+ state.
Such behavior has been explained in different
ways in the past. A model distinguishing be-
tween "atomic" and "bandlike" 4f electrons has
been suggested by Gschneidner. ' More recently,
CeAl, has often been cited as an example of a
mixed valence- -or interconfigurational fluctua-
tion (ICF)—compound'; and in another approach,
Mott' has explained the peculiar properties of
CeAl, based on a Kondo-type theory. The pur-
pose of this note is to present new data on the
very-low-temperature properties of CeAl, and

to show that they can be understood using Frie-
del's' classic theory of virutal bound states.

All measurements were performed in dilution
refrigerator s except the thermal-expansion mea-
surement, which was done in a 'He cryostat.
The data were taken by standard techniques us-
ing a cerium-magnesium-nitrate magnetic-sus-
ceptibility ther mometer. Only polycrystalline
samples were investigated; they were cut from
a 20-g button-that was are melted in argon and
annealed at 900 C for 3 weeks. X-ray analysis
showed the proper structure (hexagonal, Ni, Sn-
type). The specific-heat results are shown in
Fig. 1. Below 150 mK, the specific heat varies
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FIG. 1. Specific heat of CeA13 at very low tempera-
tures in zero field (o, b,) and in 10 kOe (Q).

linearly with temperature and yields an extreme-
ly large y value of 1620 mJ/mole K'. It remains
practically unchanged in a field of 10 koe except
at the lowest temperatures where the nuclear
Zeeman specific heat of the Al nuclei is seen
(the Ce"' and Ce"' isotopes have no nuclear
spin). This behavior is to be contrasted with
what one would have expected from the lowest-
].ying Ce" Kramers doublet state, namely a
strong field-dependent magnetic specific heat
with entropy R ln2/mole. Interpolating our data
with previous specific-heat measurements down
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