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Whenl =A3, the third-sound wavelength, the super-

Quid may oscillate as a standing wave with its center
of mass moving further than that of the crystal. In this
case, the contained Quid can contribute more (or less)
tc Df than just its normal mass. The average effect
over the entire crystal depends on the distribution of
the sizes and shapes of the irregularities and the third-
sound attenuation. This nonlinear contribution could
affect the shapes and magnitudes of the curves in Figs.
2 and 3, but its contribution depends on little-known
parameters and is very difficult to calculate.

Hewlett packard 5100A Frequency Synthesizer driven
by a Hewlett Packard 5110A Synthesizer Driver.

International Crystal Mfg. Co. , 10 North Lee, Okla-
homa City, Okla. 73102.

'2Although the crystal environment was the same at 8
and 24 MHz, the film thicknesses were not identical.

Since onset at 8 MHz occurred at lower T, the pressure
was correspondingly lower and the film thicker which
enhances the frequency shift.

' B. Ratnan and J. Mochel, J. Low Temp. Phys. 3, 239
(1970).

We estimate 670 = 0 at about n = 7.5 layers from the
Frenkel-Halsey-Hill expression n = [c' (T 1up p/p) '] '
where p/pp is the relative vapor pressure at tempera-
ture 7.' and & is a measure of Van der Waals' attraction
between the helium and the substrate. See D. M. Young
aud A. D. Crowell, Physical Adsorption of Gases (But-
terworths, London, 1962). Since n could not be experi-
mentally determined for our substrate, we employed
@=39 (layer) K from Ref. 1.

J. S. Langer and M. E. Fisher, Phys. Rev. Lett. 19,
560 (1967), See also J. S. Langer and J. D. Reppy, in
Progress in Low TemPeratlre Physics, edited by C. J.

- Gorter (North-Holland, Amsterdam, 1970), Vol. 6,
Chap. 1.

~ptu this experiment, the superlluid velocity is taken to
be the relative velocity between the superQuid and the
crystal surface and hence the velocity of the surface
due to the applied electric field. Using the work of
C. D. Stockbridge, in Vacuum MicrobaEance Techniques,
edited by K. H. Behrndt (Plenum, New York, 1966),
Vol. 5, pp. 161-167, we estimate the surface velocity
of the crystal at the third overtone to be approximately
twice that of the fundamental.

VThe constants in Eq. (3) depend only logarithmically
on the important parameters. Thus any reasonable
choice of the parameters changes the constants very
little.

Similar conclusions are obtained if other expressions
for Ea(vs' ~) cited in Ref. 15 are used.

'8Although the crystal displacement also increases by
3 the change is very much smaller than the lengths,
Cp/2f, being probed. .

20The lack of a power-level dependence in T0 also rules
out crystal heating as an explanation.
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A microscopic theory of lattice dynamics of ionic crystals-is developed in terms of non-
orthogonal highly localized wave functions. It is shown that this approach is in close cor-
respondence to some shell models and leads to a microscopic understanding of the model
parameters. The phonon dispersion of LiD has been calculated without using any adjust-
able parameters and it agrees with experiment to within 10/o on the average.

The standard approach to microscopic lattice dynamics' ' describes the electronic response to core
displacements in terms of equilibrium wave functions. As a consequence the dynamical matrix is ob-
tained as a small difference of two large contributions, namely the electrostatic interaction between
bare cores and the electronic contribution of the valence electrons. From a computational point of
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view this cancelation necessitates a very precise evaluation of the electronic part which is difficult to
achieve in nonmetals. Several attempts have been made to carry out this cancelation analytically be-
fore doing the calculation. '"' In the following I propose a different approach which uses localized non-
orthogonal orbitals for equilibrium and nonequilibrium configurations. The cancelation problem men-
tioned above is completely avoided. Moreover this formulation contains a small parameter, namely
the overlap of occupied orbitals at different ions, which allows straightforward approximations.

The starting point of the theory is the Hartree-Fock expression for the electronic energy E(R) for a
general but fixed ion configuration R,'

~(R)=2K &..., '&e.,l~. , l |{., & 2 Z
n~, n2 n~n2, n3, n&

The index n denotes both the atom site X —= (l; z), where l is a cell and e an ion index, and the quantum
number of occupied orbitals. These orbitals may be nonorthogonal and unnormalized, giving rise to
an overlap matrix

&..., = &I.,l t.,&

8
p

stands for the total electronic Hamiltonian without the Coulomb interaction between e1ectrons.
The Coulomb matrix elements are defined by

&t.,t.,l 4.,4.,&
= he'f d'~,d'~A. ,¹(&,N.,¹(&.)l&, &,I

—'0.,(&.)0.,(&,). (3)

All quantities in Eq. (1) depend parametrically on the ion configuration R.
The orbitals g„ in Eq. (1) are obtained by minimizing the energy E(R). They are well defined even

for nonequilibrium configurations though in practice, of course, only the equilibrium functions g„{'&
can be assumed to be known. To find a reasonable way to calculate the nonequilibrium orbitals g„we
note that in ionic crystals the valence electrons are tightly bound to the cores. As a result the orbitals
will mainly follow the cores if the cores are displaced. Correspondingly we write

z(fl) =z"(R)+g&5q„lv„„lq„"&&+g &5q„ I w„,„,lay„, &.
n n&,n2

The first term of Eq. (5) summarizes all terms
of zeroth order in 5g„, the second term those of
first order, and the third term those of second
order in 5g„. This defines the operators V„„and
W„„. Explicit expressions for these operatorsnln2
within the S' approximation"" are obtained if S '
in Eq. (1) is expanded in powers of the overlap of
occupied orbitals at different ions up to the sec-
ond order. %e exclude three- and four-center in-
tegrals in the following discussion because they
are expected to be at least one order of magni-
tude smaller than the tvpo-center integrals. '""

ER~ together with the bare core-core Coulomb
contribution contains the electrostatic and short-
range repulsive interactions between the ions.
These terms lead to a rigid-ion or Kellermann
model and should represent the dominant contri-
bution in Eq. (5). E"' together with free-ion func-
tions for g„' and the S' approximation has been

used by Lowdin and others"" to calculate lattice
constants, cohesive energies, and elastic con-
stants in alkali halides. The second term in Eq.
(5) describes the possibility of lowering the in-
teraction energy with neighboring ions by deform-
ing the orbitals. It vanishes for the equilibrium
configuration; therefore the first order in the
core displacements must be taken. The third
term in Eq. (5) corresponds to the increase in
energy due to the deformation of the orbitals.

In addition to the rigid-ion term, the Hartree-
like matrix elements in the second and third
terms in Eq. (5) also give rise to long-range Cou-
lomb interactions among the electrons themselves
and between the electrons and cores. The lead-
ing long-range parts can be split off by means of
a multipole expansion of the Coulomb potentials
and the introduction of induced electronic dipole

The first term in Eq. (4) describes the rigid displacement of g„{'~from the equilibrium position%{'l(X)
to the general core position%(X). The second term 5(„ takes into account the deformation of this or-
bital and is at least of first order in the core displacements since it vanishes for the equilibrium con-
figuration.

With use of Eq. (4), Eq. (1) can be written in the following form:
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moments on the ions:

The prime on the summation sign means summa-
tion only over occupied states on the ion A. ; e is
a Cartesian index. When the long-range dipole-
dipole interactions are taken out in the second
and third terms in Eq. (5), the operators V„„and
K„„become short-range operators V„„and 8'„,„,.
With neglect of higher-multipole terms, the ma-

trix elements of V„„and 0'„„decay exponentially
in the two-center approximation.

Let us assume for simplicity that we are deal-
ing with a NaCl lattice and that only longitudinal
displacements of the six nearest neighbors con-
tribute to V„„. Introducing symmetry coordinates
q", q&, and q„ for the six longitudinal nearest-
neighbor displacements relative to the ion X ((u
= 1,2; v = 1,2, 3; the superscripts A, E, and T
indicate F,', F„', and F„symmetries, respec-
tively), we write the short-range part of the sec-
ond term in (5) as

qAIIA ~gq EII s+gq TII T

In Eq. (7) the ion index A. and the sum over this index have been omitted. The above defined quantities
II", II&~, and II„measure the F,+, F»', and I"»" deformations of the ionA, induced by the short-
range part of the exciting potential V.

The 5g„'s are obtained by minimizing Eq. (5). By application of the method of Lagrangian multipliers
introduced by Tolpygo, "this variation is carried out first under the condition that p„, II", Ii„s, and
II„remain fixed. One obtains then for the second-order energy after some algebra

E &'& = (z")&'&+- g [P„,(~,) +p „(~,)]C„,„,(~,)(.,)[p„,(~,) +Z„,(x,)]
Xj &X2,V»V2

I~p. '(&) I~ lll. (&)]' I [II"(&)1' I~[q.'(&)]'[ .2( ) ( ) T( )]

y'(y) y (a) i(. (~)
gT(tL) ' A W2n(~) '

3 A

)
n(~). -

(9)

The left-hand sides in Eq. (9) contain model pa-

gq„'(x)p

P„(A.) is the ionic dipole moment and C the Cou-
lomb-force-constant matrix. o. , o.~, e~, o.~,
and o. are coupled Hartree-Fock polarizabilities'
associated with the operators [% -%(X)]„, BV/BqA,
8V/Bq&, SV/aq„T, and the mixed combination
of [% —f(A.)]„and BV/Bq„T, respectively. In a sec-
ond step E ' is minimized also with respect to
p„, IIA, Il„s, and II„Twhich allows the elimina-
tion of these coordinates.

With neglect of the fourth term in the curly
brackets, Eq. (8) is equivalent to a phenomeno-
logical shell model in which the shells simulate
I',+-, F„'-, and F„"-like deformations of the
ions. With omission of the quadrupolar deforma-
tion, a term by term comparison with the work
of Schroder" gives the following relations:

(8)

rameters; the right-hand sides, the equivalent
microscopic quantities. y denotes the shell charge
and g and g the intra-ionic shell-core springs
for the breathing and the dipolar deformation.
The transverse spring constant B in the polariza-
tion part of the shell model of Ref. 14 has been
put equal to zero, corresponding to the neglect
of all transverse contributions to V in the micro-
scopic theory. Equations (8) and (9) give the phe-
nomenological shell models a quantum mechan-
ical foundation, and especially the shell charge
a precise meaning.

I have carried out numerical calculations for
LiD to test the above theory. Each of the orbit-
als g„~'~ was represented by a linear combination
of two Gaussian functions,

2
$„'~('P) = Q &, (~) exp[- & p (~)I & -&(&)I

2] .

Minimization of the energy &(Ri'~) determined
the constants a„and b„and yielded a theoretical
lattice constant of a =4.34 A in rough agreement
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FIG. ].. The solid lines are the calculated phonon dispersion curves in LiD. The open and closed circles and
squares are experilnental points at 300 K (Ref. 15).

with the experimental value 4.10 A. Using these
orbitals I obtained the following values for the
repulsive force constants in units of 2e'/a': A
=8.22, B=-0.97, A'=0.40, and B'=-0.09. Fin-
ally the five polarizabilities of the D" ion have
been determined by means of a variational pro-
cedure. For the I",+ deformation I used the or-
bitals g„i'~ and calculated the relaxation of the
constants a, and b, due to the I',+ displacement
of the nearest neighbors. For the I"„"deforma-
tion 5g was represented by two Gaussian orbitals
with opposite signs which were slightly displaced
from the D core to obtain z-like behavior. The
free constants again were determined by minimi-
zation of the electronic energy after turning on
the various I"» perturbations. The I'» defor-
mation was determined in a similar way and
turned out to be negligible compared to the I",'
deformation. Expressing the various polarizabil-
ities in terms of the more familiar spring con-
stants by means of Eil. (9), l obtained the values
y = —0.73e, g" = 26.2, and g~ = 15.0. Using the
above values I calculated the phonon dispersion
in LiD along the symmetry directions. The solid
lines in Fig. 1 represent the theoretical disper-
sion curves; the open and closed circles and
squares are experimental points for longitudinal
and transverse phonons at room temperature. "

In conclusion I have presented a no-parameter
microscopic theory for the lattice dynamics of
ionic crystals which seems to be better suited
for numerical calculations than the other micro-

scopic theories. As an example I have applied it
to I iD and found the lattice constant and the
acoustical branches in agreement with experi-
ment within 5%. The optical branches show larg-
er discrepancies with a maximum error of 25%
in the TO branch at the I. point.
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