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Ab Initio Calculation of the Spin Susceptibility for the Alkali Metals
Using the Density-Functional Formalism~
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The new variational-principle, density-functional theory of the spin susceptibility p is
used to make a pRom calculations of & for the alkalis. Crystalline effects are calculated
by the spherical-cell method and the local spin-density approximation is used for the ex-
change-correlation functionals. The excellent agreement between the results and recent
experixnents establishes the validity of this new theory and the correctness of the theoret-
ical values for the exchange-correlation enhancement of g for a homogeneous electron
gas for &~& 5.

Recently the de Haas-van Alphen (dHvA) effect
has been used to measure' the conduction-elec-
tron spin susceptibility X for K, Rb, and Cs.
These results have the potential, when combined
with an appropriate theory, of extending our un-
derstanding of exchange and correlation (XC) ef-
fects of the lower-conduction-electron-density
systems. X is especially useful in this regard
since it is essentially unaffected by the electron-
phonon interaction while being very sensitive to
exchange and correlation. Unfortunately the
dHvA method only determines a series of possi-
ble values for X and some theoretical guidance is
necessary to choose the correct value (Cs in par-
ticular). Most theoretical work has concentrated
on the XC enhancement for a homogeneous elec-
tron gas, y&/Xo, as a function of r, and has re-
sulted in a wide range of values, although a num-
ber of recent calculations' using different proce-
dures agree to within a few percent. ()(~ and )(o
are the susceptibilities of a homogeneous system
with and without interactions, respectively, and

r, is the usual electron-density parameter. ) The
form of y~/Xo is only well established for r, ~ l
and although the above calculations are not based
on simple expansions in r, their validity for the
range x,=4 to 6 remains in doubt.

When the above calculations are compared with
experiment there are many large discrepancies. '

g

With regard to x, in the range 5 to 6, Cs is es-
pecially important; however, after Li, Cs is the
least free-electron-like of the alkalis. There-
fore any theory for X that is to further our under-
standing in this range of x, must be capable of
simultaneously -treating band and XG effects.
Such a theory has recently been developed and
it is the purpose of this Letter to report calcula-
tions of X for all the alkalis. The new formula
for X is based on a variational principle within
the density-functional formalism of Hohenberg,
Kohn, and Sham. 4 It has the advantage of includ-
ing the core-electron contribution to XC which
is quite appreciable for the heavier alkalis. One
of the ingredients of the theory is XI,/)(, for a
range of densities; thus it provides information
on this quantity indirectly.

The new VP variational formula for X is based
on two theorems' for electrons in external sca-
lar and magnetic fields v(r) and B(r): (i) The
ground-state energy is a functional of n(r) and

9R(r), the electron number and magnetic moment
densities, i.e., E„s[n,9R]. In particular the ki-
netic and the XC energies may be exyressed by
a universal functional G[n, 9R]. (ii) E„s is sta-
tionary with respect to variations in n(r} and
9R(r) and the correct n(r) and 9R(r) make it a min-
imum. For a paramagnetic system (small 9R) it
is sufficient to expand G about the SK =0 value:

G[n, 9R] =G[n]+ s J d'rd'r'9R(r)G[r, r', n]9R(r')+. .. ,

where G[r, r'; n] is a functional of n and plays the central role in the theory. From the stationary prop-
erty of E„&with respect to variations in n and% it follows' that to first order in B, n is unchanged
from the 9R =0 situation and

B(r) = J dsr'G[r, r'; n]9R(r').

KS determine the susceptibility functional X[n] by introducing the paramagnetic response functional
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G '[r, r'; n] with which (2) can be inverted to yield

SR(r) =fde'G" ~[r, r'; n]B(r'),

X[n] =0 ' fd'r d'r'G '[r, r'; nj,

(3)

(4)

Although the KS formula (5) does represent an advance over previous work' it is inadequate for sys-
tems where crystalline effects are important because it makes the slowly varying approximation not
only upon the XC energy but also upon a part of the kinetic energy.

The VP approach is based on variational principle, namely that X '[n] is given by the minimum of

X '[n, SR] =0fd'xd'x'9R(r) G[r, r'; n ]9K(r') /[ fd'r K(r)]2 (6)

with respect to variations in K(r), and the fact that an exact expression for G, '[r, r'; nj can be ob-
tained from the KS "single-particle-equations method. " The latter makes it possible to express X in
terms of readily obtainable functionals, i.e., G, '[r, r'; n] and G„,[r, r'; n]—= G[r, r'; n]-G, [r, r'; n], by
introducing the XC-enhanced internal field b(r) through

%(r) =f d~x' G~ ~[r, r'; n]b(r') .
Using as a trial function for SR(r) in (6) that generated by b(r) a constant in (7) we obtain

where 0 is the crystal volume. As pointed out by KS Eq. (4) is completely general and exact. Howev-
er, the functionals G[r, r'; n] and G '[r, r'; nj are essentially unknown. KS obtain an approximate for-
mula for y[n] by noting that if the XC dependence of G[n, %] on K is neglected (denote the correspond-
ing functionals by G,[n, SR], G,[r, r'; nj, and G, '[r, r'; n]) y[n] becomes X,[n], the usual band-theory re-
sult, and retaining the zeroth-order term in a &n expansion of G '[r, r'; n] -G, '[r, r', nj:

X[n]=y,[n]+0 ' f dam[a~(n(r)}-yo(n(r)}]. (5)

X,[n]
I+X,[n]Q f d'rd'r'y[r; n]G„,[r, r'; njy[r', nj '

y[r; n] =Z~~-(u —«)I y~(RI'/Z «(u —~~),

(8)

where the y;Pr) are the self-consistent solutions of KS single-particle equations with eigenvalues t„
the chemical potential p, is determined so that the total number of electrons N equals +&8(p, —eq)
which defines an auxiliary "Fermi surface" (FS) in distinction to the true FS,' and X,[nj = p,ag, ( p) with

g, (p) the single-particle density of states at the auxiliary FS.
It should be emphasized that the use of a constant for b(r) to produce a trial %(r) does not mean that

the XC enhancement of b(r) is being neglected. The errors produced by the right-hand side of Eq. (8)
are second order in the deviations of b(r) from some optimum constant enhancement. Equation (8) is
reminiscent of forms for X derived for transition metals' and its denominator represents the XC en-
hancement of X over the usual band-theory result. The fact that y and G„, are functions of position is
extremely important in accounting for the inhomogeneous nature of real systems including the effect
of the core electrons since n is the total electron density.

The exact form for G„,[r, r';n] is unknown. However, there is evidence that the local spin-density
approximation for G„, is adequate. It results in (VP)

G„~[r, r'; n]1, =[X„(nor)}-Xo (n(r)}]6(r- r').
With substitution of (10) in Eq. (8) it follows that

x m, /m

y, (r,) I+(m, /m) yo(r, )0 f d'r y'[r; n] fxz '(n(r)}—Xo '(n(r)}j '

(I0)

where we have introduced the single-particle aux-
iliary-FS density-of-states mass m, so that X,
= (m, /m) y, (r,).

The self-consistent solution of the KS single-
particle equations were found in a spherical-cel-
lular approximation by use of the Kohn' varia-

!
tional method. Following the usual prescription,
the local density approximation' was used for
E„,[n]. The number densities for core electrons
were taken from atomic Hartree-Fock calcula-
tions' and kept fixed in the determination of the
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TABLE I. Comparison of various theories for &/Xo(r~} with experiment: Eq. (12}—lattice potential included by
effective mass only with XC treated ss in homogeneous case neglecting core effects; Eq. (13}—static dielectric
screening by the ionic cores of conduction e-e interactions and lattice potential included by effective mass only;
Eq. (5}—KS formula; Eq. (11}—VP veriationsl-principle results. CESH is conduction-electron spin resonance.

Ele. r m /m8 8

I

r * h 8
I

Fq. (12) Eq. (13} I Eq. (5) I Eq. (11} cEsR ' ' ' sPIN wAvE
r * KS I VP

d Ae8 dHvA

Li, 3.26 l.4? 4.7l,' l.47 2.79 2.57 195 ' 266 2.50+.05
2.64+.13

Na 3.99 l.04 3.84, 1.60 1.7o 1.63 1.63 1.62 1.65+.05 1.58+.09
1.72+.08

4.86 1.07 4.39 1.78 2.03 1.79 l.82 l.79 1.7ol+.oo3 1.69+.07

,Rb

Cs

5.2o l.o5 4.33

5.62 1.18 4.83

1.87

2.01

2.07

2.89

1.75

2.10

1.87
I

2.08

1.78

2.20

1.724+.008 1.59+.12

'-1.76 or2. 24
+e06 +.06

Kushida, Murphy, and Hanabusa, Bef. 10.
Kettler, Shanholtzer, and Vehse, Bef. 11.
Schumacher and Vehse, Bef. 12.

Dunifer, Pinkel, and Schultz, Bef. 18.
Knecht, Bef. 1.

self-consistent valence pg's. In evaluatmg (11)
and (5) we have used values of Xq/X, given by
von Barth and Hedin. ' The results for m, and X
from Eq. (11)for the alkalis are reported in Ta-
ble I, along with the results of the KS formula
(5) and, for the purpose of comparison, experi-
mental values for X as well as the predictions of
other formulas which will be discussed below.

An often used formula' for X to include XC is

x '=x» '+X. '(r.)-xo '(r.),
where Xb = (m~/m) Xo(r,) and m&/m is the band-
structure enhancement of the density of states.
This formula is derived by assuming that the XC
for a metal is the sa,me as for a homogeneous
electron gas of the same conduction-electron den-
sity, while the Hartree field is included in the
band structure. Equation (12) follows from (11)
on taking the electrons at the auxiliary FS to be
plane waves so that y[r; n] - I/O and taking n(r)
in Xl,

' and Xo
' to be the average conduction-

electron density. Thus, from our viewpoint, (12)
may be regarded as a crude approximation to
(11). In particular (12) fails to include the influ-
ence of the core electrons on the XC enhance-
ment of X. In fact, as seen in Table I, its agree-
ment with experiment worsens progressively as
we consider larger core systems. (In preparing
Table I we have arbitrarily taken m~ =m, .)

To account simultaneously for band effects and
the influence of the core on XC, following a sug-
gestion of Hedin, "a model Hamiltonian can be
introduced (VP). This leads to

x/X. ( .) = ( / )[x ( .*)/x.( .*)j,
where r,* = (m~/m)r, /e and & is the dielectric
constant due to the cores." This gives consider-
able improvement over Eq. (12) (see Table I) and
indicates the importance of the influence of the
core electrons on XC. From Hedin's analysis
this model is only applicable to systems which
have small cores and whose conduction electrons
are free-electron-like. In such cases the intro-
duction of the dielectric constant due to the cores
in the e-e interaction while treating the electrons
as free with a band mass accounts for the gross
features of the core on XC. Thus Eq. (13) works
reasonably well for the alkalis which satisfy
these conditions, but is already insufficient to
describe the volume dependence" of x/xo(r, ) for
Li.

As expected the KS formula (5) fails whenever
m, is large and is especially poor for Li. The
VP formula (11) is in good agreement with ex-
periment for the entire series of alkali metals.
This is because it simultaneously includes crys-
talline effects, and the influence of the core elec-
trons on XC. Theory unambiguously requires
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n(r) to be the total electron density; however, if
we had incorrectly used only the valence electron
density in Eqs. (10) and (11) the results would

have been similar to those obtained from Eq.
(12). Thus we see that by using the total elec-
tron density in G„, the influence of the core elec-
trons on XC is properly accounted for.

The validity of the VP theory is established
by the success of its predictions for Li and Na
where there is little doubt about the values of
)(„/)(, since r, s4, and where)( has been mea-
sured directly. ' " Furthermore, for K and Rb
the VP predictions for X differ from the dHvA

values by at most 5% and the existence of spin-
wave measurements removes the ambiguity in
the dHvA method. If we consider the fact that
the calculations have been done in the spherical-
cell approximation this level of agreement sug-
gests the correctness (+ 5'%%uo) of recent calcula-
tions of X„/X, for x, & 5. Unfortunately, for Cs
there are only the dHvA results which admit two
plausible values of )(/X, (1.76 and 2.24). Our cal-
culation indicates strongly that the higher value
is correct, but this is dependent upon the spheri-
cal-cell approximation for calculating m, (and

y[r; n]) and upon the use of )(„/Xo for x, ~ 5.6
where the calculations are most uncertain. There-
fore, measurements of X that could distinguish
between the two plausible dHvA values would be
very helpful in furthering our understanding of
XC effects in the range 4.5 ~x, ~ 5.6.
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Si(111):SiH3—A Simple New Surface Phase
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Photoemission spectra show that atomic hydrogen reacts near room temperature with

Si(111)1x1to form a trihydride phase, Si(111):SiH3. The new phase, clearly to be dis-
tinguished from the monohydride Si(111]:Hobtained from Si(111)7 x 7, has been identified
by theoretical calculation of the photoemission spectrum. Formation of Si(111):SiH3sug-
gests that the vacancies that exist on clean Si(111)7 x 7 are disordered on Si(111)1x 1.

In several recent sudies chemisorption of oxy-
gen" and hydrogen" on various semiconductor
surfaces has been investigated by energy-loss,
ion-neutralization, and ultraviolet-photoemission
spectroscopies (UPS). For each of the surfaces
studied it was concluded that the adsorbate atom

forms bonds with surface atoms of the equilibri-
um clean surface. For the particular case of
atomic hydrogen adsorbed to the annealed Si(111)
7 & 7 surface, theory" and experiment' agree in
suggesting that the H atoms bond to the single
dangling orbital per Si atom to form what we
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