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From Eq. (6), a finite discontinuity in C» ac-
companied by (i) a finite compressibility discon-
tinuity (uis-a-uis first-order transitions) and
(ii) a well-behaved (eq/BT)» yields a finite dis-
continuity in C„&.In addition, since a(sy/BT)n&
is the difference between the mean and partial en-
tropies per atom of the monolayer,

b CN q
= ECn~+ b,[(q„—I) K2r], (7)

where I is the equilibrium heat of adsorption T(s„
—s) involving only the mean entropies of vapor
and film. For the present system, since the
mean entropies are continuous at the transition,
I must be continuous and a finite discontinuity in

C» resulting from finite discontinuities in q„
and K» indicates a finite discontinuity in C„~.
We conclude that if the observed transition in the
nitrogen monolayers is indeed characterized by
discontinuities, as suggested by the data and
quantitative analysis, then the transition is of the
classical second-order type. Whether the pres-
ent behavior is a specific property of nitrogen on
graphite or a more general property of monolay-
ers of heavy atoms adsorbed on relatively homog-
eneous surfaces with small lateral translation
barriers (lateral variations across the basal
plane of graphite are less than 40 K for all the
noble gases") is an intriguing question. In this
regard, we note that recent precision isotherm
studies of krypton on graphitized carbon black'
appear to exhibit finite discontinuities in the com-
pressibility at corresponding coverages slightly
below monolayer capacity.
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An exact expression is derived for the isotopic difference of jump rates in diffusion pro-
cesses and is used to examine several topical difficulties in the theory.

The dependence of diffusion on isotope mass
provides an important method for identifying the
mass-transport mechanism. ' Chemically identi-
cal isotopes possessing masses M" and I' com-
plete jumps at differing rates zv" and se' such

that

gc "/w ' =K[(M'/M")' —l]+ I

It has been widely believed"' for many years
that the many-body factor K (often written ~
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and obviously unity for particles in independent
motion) can be expressed in terms of a harmonic,
normal-mode analysis of the diffusion saddle-
point as "the fraction of the kinetic energy in the
unstable (diffusion-causing) mode possessed by
the diffusing atom. " In this Letter we derive a
simple, exact expression for w'/zu ' that bears no

general relationship to kinetic-energy compo-
nents. More speculative remarks about several
outstanding problems are then offered on the ba-
sis of this new result.

The probability with which members of a clas-
sical equilibrating ensemble occupy points (r, r)
of their phase space' is p(r, r)=p„(r)p,(r). Here,
r for N-atom systems has 3N dimensions x,. that
locate Cartesian coordinates i of particles o. ,
mass M„.p„(r)= p„,exp[- V(r)/kT] depends
only on the many-particle potential function V(r)
and is independent of the velocity distribution
p, (r) = p» exp[+,„-M „x;„'/2kT]. The con-
stants p„,and p„,normalize p„and p~. To ob-
tain the exact analog of Eq. (1), we first calculate
inside this framework the rate at which repre-
sentative points pass in one direction through a
surface S in r space. The rate per unit area
through a surface at r with normal n, compo-
nents n, , is evidently

w(n) = f-„.; »d'r(n r)p(r, r)

= [nrg, . „n,. „'/M„]'"p„(r)/2K'.
The relative rates u "and zv' for two ensembles,
identical except that atom 1 having mass M" in
the first is replaced in members of the second
ensemble by M', thus obey

~ "(n) [Q,n, ,2/M". +Q,„.,n, '/M
„ I

'"
ur '(n) Ig,.n, ,'/M'+ Q, ~„„,n /M„)

since the mass-independent factors p„cancel.
Equation (3) is the central result of this paper.

The remainder comprises applications, and
elaborations on its use.

(1) Simple examp/es. —Any specific saddle sur-
face S(r) employed to count jump frequencies is
defined by V and is thus M independent, so that
Eq. (3) applies to diffusion. When S is planar, n

is constant over S and Eq. (3) provides the final
jump frequencies to be compared with Eq. (1).
For a monatomic host with M =M, n g1, we find

less of anharmonicities, provided S remains
planar, and does reduce, as I",M'-M, to Eq.
(1) with ~ the fraction of kinetic energy possessed
by atom 1 in motion along n. Even isotopic dis-
order of the host spoils the simple interpretation,
however; in general, w "/w'is specified by the
reciprocal effective mass along n rather than by
kinetic energy. ' For example, in a diatomic sol-
id with sublattice masses M, and M„gisotopes
of mass M" and M'have, from Eq. (3), rates
specified by

n, ,.', g =g, ,n, ,',
1 —K~ —Q =Q;

~ ~~ t1

and the analog of Eq. (4) bears no simple rela-
tionship to kinetic energy.

(&) Application to xocksalt crystals. —Our
proof, to the contrary, that zo«/m' is determined
by n, leads to the following provocative specula-
tion: In some lattices (e.g. , fcc, rocksalt) the
saddlepoint locations of the migrating atom and
its saddlepoint neighbors are determined large-
ly by atomic size and symmetry (they fall in a
plane). It therefore seems likely in these cases
that S, and hence n also, depend mostly on crys-
tal structure and is not very sensitive to the par-
ticular atomic species forming the lattice. For
the monatomic fcc case this merely implies that
K takes similar values for all fcc crystals, which
is approximately true. ' For the rocksalt struc-
ture we can probably neglect 1 —K, —K2 which
depends only on second and further-distant sad-
dlepoint neighbors, to obtain

so «/w'= (1+ &&&I/M )

K = a, M~/(v, M~+ /&2M, ).

Arbitrarily choosing ~, = 9g we find the fit to the
sparse existing data on pure rocksalt lattices'
shown in Fig. 1. New data on pure rocksalt com-
pounds, particularly those with widely dissimilar
sublattice masses, would clearly be of great in-
terest in clarifying the degree to which S in com-
pounds is indeed independent of all parameters
except lattice structure.

(3) &ffects of nonplanar S: Temperature depen-
dence. —We now emphasize that S is not general-
ly planar and its curvature modifies the isotope
effect. The w(n) from Eq. (3) require thermal
averaging over S to give

= j[1+K(M/M —1)]/[1+ K(M/M' —1)]]' ', (4)

with ~=+., n, ,'. This exact result holds regaxd-
g,.(n, ,')/M" +Q,.„„,(n,. ')/M '"

u ' ),(n, ,')/M'+g, „„,.(n,. „')/M
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FIG. 1. The predicted f(: for rocksalt structures ac-
cording to Eq. (5), with ~&

——9&&, compared with experi-
mental results for NaC1, CoO, and NiO. ~, and ~& are
the ~ of Eq. (4) for a and 5 isotopes.

in which angular brackets signify JdS p„(r)over
S.

A possible resolution can now be seen for ma-
jor difficulties encountered in recent theoretical
treatments of the isotope effect. Most important
is that computer studies by Bennett' of a Len-
nard-Jones crystal at high temperature conform
rather well to experimental results for real fcc
crystals' in predicting K = 0.89+0.05 for T =T,
yet careful theoretical studies of n at the fcc sad-
dlepoint so give a value 0.98 that is much too near
unity. ' This discrepancy can be explained as fol-
lows by a temperature dependence of K: As s,
is by definition a symmetry point of V, p„(r-s,)
is locally symmetric and odd powers vanish from
the Taylor expansion of n;„'when inserted in Eq.
(6). For «=1 at the saddlepoint so one then finds

«(T) =1 -y,T+y,T'+. . . ,

in which y, is positive. The choice y, -0.1T
can obviously reconcile experiment, computer
simulation, and the theoretical e at so, since on-
ly at T-0 does n(so) determine «. An explicit
study of S near so using computer models in con-
junction with Eq. (6) could yield the required val-
ues of the y and hence «(T), and it is partly for
the purpose of sti~ulating such efforts that this
paper is written. Neither molecular dynamics
nor experiment throughout the range 0 &T &T
seems feasible at present. Interpretations of a
T-dependent x in terms of multiple-diffusion
mechanisms' must be regarded with caution until

FIG. 2. Sketch showing potential contours, the curved
saddle surface S, and the saddlepoint plane so tangent to
8 at the saddlepoint sz, Only an almost tangential tra-
jectory (a) can cut S twice, but a wide variety of trajec-
tories (e,g. , 5) cut so twice.

these questions are clarified.
(4) Return jumps. —At the same time, a non-

planar S renders unreliable the usual connection
D "/D'-1 =f (m "/sv'. -1) between isotope diffusion
coefficients and jump rates. ' Here f is the fac-
tor introduced by Bardeen and Herring'0 to de-
scribe defect-correlated random walks. This re-
lationship holds only when each jump counted in
m causes a dynamically independent diffusion
step. But for a curved S, and certain almost tan-
gential trajectories (see Fig. 2), a return inter-
section is inherent in the lattice dynamics; and,
since these intrinsic return paths are isotope de-
pendent, they modify D "/O'. We must therefore
write

D "/D' —1 =f (u, "/u, ' —1),
with mo the value of se corrected for multiple
crossings of S. Note that our concern is focused
here on multiple crossings of S, rather than
those much more frequent, but largely irrele-
vant, multiple crossings of the plane S„tangent
to S at s, (see Fig. 2), that have been examined
in recent molecular-dynamical work. '

Calculations of m/~0 for trajectories nearly
tangential to S can be completed analytically in
terms of the radii of curvature describing S, the
value of (&'V/en')-, , and the effective masses for
motion perpendicular and parallel to S. The re-
sults are not given here as the required coeffi-
cients are not yet available for any model crys-
tal. They could, however, become accessible
from the model studies of S urged above. The
dynamical correlation factor, g =m, "ao'/u, 'ao",
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by which these effects are described, obeys g &1

(&1) for (9'V/&n')-, positive (negative) and M"/
M' &1. Ordinary saddlepoints with (&'V/Bn')-,

negative thus enhance the mass sensitivity of D
whereas potential troughs at the saddlepoints
(perhaps in bcc lattices) reduce the mass depen-
dence.

(5) Fast diffusion. In—this same context we
note finally that dynamical correlations increase
for ultrafast diffusion (e.g. , in liquids and super-
ionic conductors) in which the distinction between
vibrational and diffuse motions becomes blurred.
The correlations increase as the saddlepoint en-
ergy decreases, and the notion of a saddlepoint
surface tends to lose its utility. Recourse must
eventually be made to an explicit calculation of
the correlation functions (xia(0)x;„(t))for the var-
ious isotopic species.

(6) An exact classical Prediction. —The exact
results (2) and (6) offer a precise test of the clas-
sical theory. Newtonian trajectories in the con-
figuration space of an impurity M' in pure host
a, mass M„arefixed by V(r) and the mass ra-
tio p., '=M'/M, alone. All correlation effects
therefore depend only on T and p, , so that there
exists from Eq. (2) at T a unique function y(p)
such that

(9)

with D, ' the diffusion coefficient of M' in a, and
A. independent of p, . y can depend only weakly
on p. through ordinary correlation effects' and
curvature of S. If impurity isotopes M" and M'
are diffused into two isotopically pure forms a
and b of a single host (e.g. , Li' and Li') a unique
A in Eq. (9) must, in the classical theory, bring

the four D onto a smooth curve that exhibits the
weak p. dependence of y. A failure of this rela-
tionship among correctly established D would
point unambiguously to a breakdown of the clas-
sical theory, and hence to quantum effects in dif-
fusion. The similar but more complicated re-
sults that can be developed for compounds will
be reported elsewhere.

*Work supported in part by the National Science Foun-
dation under Grant No. NSF-DMR-72-08026.

N. L. Peterson, in Diffusion in Solids: Recent Ad
vances, edited by A. S. Nowick and J. J. Burton (Aca-
demic, New York, 1975).

J. G. Mullen, Phys. Rev. 121, 1649 (1961).
~A. D. LeClaire, Philos. Mag. 14, 1271 (1966).
For an introduction to the use of these methods in dif-

fusion see C. P. Flynn, Point Defects and Diffusion,
(Oxford Univ. Press, Oxford, England, 1972).

~M. D. Feit, Phys. Rev. B 5, 2145 (1972), reaches
somewhat similar conclusions from studies of a ther-
mally fluctuating harmonic reaction coordinate.

Results are given by N. L. Peterson, in Solid State
Physics, edited by H. Ehrenreich, F. Seitz, and D. Turn-
bull (Academic, New York, 1968), Vol. 22, and in Ref.
1.

C. H. Bennett, in INffusion in Solids: Recent Advan
ces, edited by A. S. Nowick and J. J. Burton (Acadexnic,
New York, 1975), and Bull. Am. Phys. Soc. 20, 866
(1975) .

8H. B.Huntington, M. D. Feit, and D. Lortz, Cryst.
Lattice Defects 1, 193 (1970); see also Bennett, Ref. 7.

A. H. Schoen, Phys. Rev. Lett. 1, 188 (1958);
K. Tharmalingam and A. B. Lidiard, Philos. Mag. 4,
899 (1959).
toJ. Bnrdeen and C. Herring, in ImPerfections in ¹ar

ly Perfect Crystals (Wiley, New York, 1952).


