
VOLUME 35, +UMBER 25 PHYSICAL REVIEW LETTERS 22 DECEMBER 1975

and SolM State Teach Detectors, Bucharest, 1972, ed-
ited by M. Nicolae (Institute of Atomic Physics, Bucha-
rest, Romania, 1972), p. 526.

E. K. Shirk, P. B. Price, E. J. Kobetich, W. Z. Os-
borne, L. S. Pinsky, R. D. Eandi, and R. B. Rushing,
Phys. Rev. D 7, 3220 (1973).

Critical Behavior at the Onset of k-Space Instability on the X Line

R. M. Hornreich
DePartment of Electronics, The Weizmann Institute of Science, Itehooot, Israel

and

Marshall Luban
Department of Physics, Bar-Ilan University, Ramat-Gan, Israel, and Department of Electronics,

The TVeizmann Institute of Sceince, Rehovot, Israel

Rlld

S. Shtrikman*
DePartment of Electronics, The Weizmann Institute of Science, Itehooot, Israel

(Received 28 July 1975)

We calculate the critical behavior of systems having a multicritical point of a new type,
hereafter called a Lifshitz point, which separates ordered phases with k=0 and k&0 along
the ~ line. For anisotropic systems, the correlation function is described in terms of
four critical exponents, whereas for isotropic systems two exponents suffice. Critical
exponents are calculated using an &-type expansion.

We introduce a new multicritical point whose critical behavior is strikingly different from any report-
ed px'eviously. Among other attributes lt is

&
ln general& necessary to intx'oduce a pair of expollents

to replace each of the correlation-function critical exponents q and v. To introduce this new multicrit-
ical point, consider for simplicity the bare free-energy-density functionaL for an isotropic system de-
scribed by a scalar order parameter, '

E (M) =a,M'+a, M'+a, M'+. ..+ c,(VM)'+c, (V'M)'+. . . .

In the vicinity of the usual critical point, the only
terms pertinent to a study of the system's criti-'
cal behavior are those with the coefficients a„
a4, and c,.' The special point we shall introduce
is characterized by the necessity to consider also
the c, term. We shall refer to this as a Lifshitz
point. ' It will occur whenever c, or its renormal-
ized counterpart vanishes at the phase transition.
The Lifshitz point is thus analogous to a tricriti-
cal point where the a, term must be considered
because of the vanishing of a4 or its renormalized
counterpart. 4 Here we discuss the critical be-
havior of a system in the vicinity of a Lifshitz
point using renormalization- group techniques.

An example of a phase diagram describing a
system exhibiting a Lifshitz point is shown in
Fig. 1. As one moves from 1 to 2 along the A.

line of second-order phase transitions by vary-
ing a parameter I', the ordered state changes
from ferromagnetic to helicoidal. ' This could be
achieved, for example, by varying the pressure
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FIG. 1. Schematic phase diagram describing a mag-

netic system exhibiting a Lifshitz point I-. The curve
1-2 is the ~ line of second-order phase transitions.
The upper half of the figure shows the equilibrium wave
vector k of the helicoidal and ferromagnetic phases on
the ~ line.
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or the composition of mixed compounds or alloys. Note that the wave vector k characterizing the heli-
coidal structure increases continousty from k =0 at the Lifshitz point I, . In terms of (1), the coeffi-
cient c, changes sign and c, is positive at I.. Simple models which display a X line of this type have
been studied in the molecular-field approximation by Yoshimori, ' Villain, ' and Kaplan. '

Before describing the renormalization-group treatment, it is useful to apply the Ginsburg criterion
so as to determine the critical dimensionality d, above which classical behavior is to be expected.
Consider a Landau free-energy-density functional of the form

E(M) =a, 't M2+a~ M4+c s(V BM) 2+c„(V„M)~+c&(V 2M) (Vs M). (2)

Here V' and ~8 are gradient operators of dimensionality m and d -m, respectively, M is an n-'compo-
nent vector order parameter, and t is the reduced temperature. We are thus assuming that for only
d -I coordinates is there a contribution to E which is quadratic in the spatial derivatives of M. For
simplicity, we have assumed that the system is otherwise isotropic. " In view of the isotropy of the
two sets of spatial coordinates, we ean regard both m and d as continuous variables (with m (d) and
calculate d, (m), the critical dimensionality above which the critical exponents adopt classical values.
The quantity d, (m) is most simply determined by requiring that the contributions to the equilibrium
free energy from the terms a, 'tM' and a4M~ be of the same power of t. For t~0, this is equivalent
to requiring that a,(M') ~ a,fd'k(IM„I ') be of order t. It is then straightforward to show that (M')
~t(~ ~ i2)i2, and the critical dimensionality is thus given by"

do(m) =4+m/2, m (8.

The regions of (d, m) space in which classical and nonclassical critical behavior will occur are thus
separated by a critical-dimensionality line. This suggests that one might calculate critical exponents
for a system associated with a point (d, m) in the nonclassical region by expanding in a double power
series in e„=m, -m and eq ——(do-m, ) —(d -m), where (d„mo) is any point on the critical-dimension-
ality line. This constitutes a generalization of the usual Wilson- Fisher e expansion.

Turning now to the renormalization-group calculation, we consider a Landau-Wilson Hamiltonian of
the form

1X= —2 v (q)g ~g -Q I ii (a g i) (6 ii'0' t ii) (4a)

v (q) =~+c,q„'+qq'+ (q„')'+c~q„'qs'+et, (q8')'+O(q'), (4b)

18

qn=Zq&~ qs = Z
~l 5=m+ j.

(4c)

Note that we have normalized the coefficients of both q~' and q
' to unity. To first order in e and 6p,

the renormalization gives

v'(q) = f'a b (" i[x+q&2/b'+c, q '/a'+ (q „')'/a'+cz (qa')'/b'+c& q„'qs'/a'b' —4(n + 2)uA (x)],
Bib (tf 11l)[ 4( 8Q C (0)]

(5a)

(5b)

where

A(~) =(2~) "f[(q ')'+qs'+r] 'd" q (5c)
! order to restore the coefficients of both q~' and

q„4 to unity, we set
and C(0) =dA/del„, . The integration is over the
volume 1/a ( Iq„l(1, 1/b (!qg I(1, where a '
and 5 ' are small-momentum cutoffs. To de-
scribe critical behavior in the vicinity of the
LUshitz point it is necessary to introduce a pair
of critical exponents to replace each of the crit-
ical exponents q and v.' The subscripts l2 and
l4 will be used to distinguish between them. In

g'=a~b" ~b2 "~2

4" ~f4 =$2" ~$2

(oa)

(8b)

As usual, g», q„=0+0(e'). It is now easily seen
that c& and cq are irrelevant. The usual criti-
cal points are obtained for c,*=~. The special
point we seek is obtained from the following fixed-
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point relations: Lifshitz-Gaussian,

c *=u*=0'
1 (7a)

exponent scaling relations

Pl =~a(2-~l -rl), rl =Pl(bl —1), (12)

Lifshitz-Heisenberg,

c,*=0, u*=a, [4(n+8)C(0)] 'lnb,

where

e, =4-d+m/2 =e /2+as.

(7b)

(7c)

The Gaussian fixed point is stable for e& & 0 or
d ) 4+m/2 and the Heisenberg fixed point is sta-
ble for e, ) 0.

The critical exponents v are found in the usual
way from

r,+l r*=-a' "(r, r*-), v =a, b. (8)

Taking 0 =a yields v, 4, the two-spin correlation-
length exponent for spins joined by a vector whose
components lie entirely in n. Similarly, by set-
ting 0 =b, we obtain v». In general there will be
a crossover from v„ to v» as the Lifshitz point
is approached. Using (7b), (7c), and (8), we ob-
tain for ~, &0

v» 1 (n +2)
v = =4 1+2( 8)el I +0( e)l. (9)

For the completely isotropic (m =d) model, the
results of a second-order e calculation for the
Lifshitz-Heisenberg fixed point are

3 (n+2)
Il4 20 ( )

82e~n+ 0( ~)n~ (10a.)

1 (n +2) (n +2)(15n2+89n +4)
4 16(n + 8) 960(n + 8)3

+O(e „'). (10b)

mv, 4+ (d -m)v, 2
=2- cl, ,

rl =(4 nl4)vl4=(2 -nl2)vl2 -~ (11a)

(11b)

The factor 4-g„arises since, in the vicinity of
the Lifshitz point, the order-parameter fluctua-
tions in the m-dimensional subspace are domi-
nated by the term (lf ')' in Eq. (6b). The three-

Note that to second order in e the Heisenberg-
Lifshitz fixed-point relation c,*=0 becomes c,*
—G(u*)'=0 where G(0 is the (cutoff-dependent)
part of a Feynman diagram proportional to p~'.
This relation is analogous to that found by Stephen
and McCauley. '

The new scaling relations appropriate to a gen-
eral (nonisotropic) Lifshitz point are

remain unchanged. Note that the right-hand equal-
ity in (1lb) reduces the number of independent
exponents from four to three for a general Lif-
shitz point. For an isotropic Lifshitz point there
are two independent exponents.

The preliminary renormalization-group results
given here are probably not sufficient to calculate
the critical exponents accurately. In particular,
since our second-order results were obtained
by expanding from eight dimensions, it is too
much to expect that they will be valid in three
dimensions. The requirement that P, be posi-
tive implies, from Eqs. (11) and (12), that lll4
&1 for the isotropic Lifshitz point whend =3. A
renormalization treatment for the anisotropic
model to second order in & will be given else-
where. "

Inspection of Fig. 1 suggests that we define a
nenes critical exponent. Approaching the Lifshitz
point on the helicoidal segment of the A. line we
expect that the wave vector k will be related to
the reduced variable P = (P -P, )/P, by

k- lpl8ll, p(0. (13)
In a mean-field or Landau theory, P„=-',. Fluc-
tuation effects will alter this value of P„, as
well as give rise to singularities in the shape of
the phase boundaries at the Lifshitz point. Simi-
lar features are displayed at bicritical points. "
A preliminary renormalization- group study in-
dicates that pl, cannot be expressed solely in
terms of the Lifshitz-point critical exponents.
To first order in e& there is no correction to the
mean-field value of P„.

In conclusion, we have shown that critical be-
havior at the Lifshitz point should be strikingly
different from any previously reported. The con-
ditions necessary to observe this point can be
achieved in at least two ways: by varying an ex-
ternal parameter (e.g. , pressure) and/or by pre-
paring mixed compounds or alloys. The recent
review by Cox" indicates that there exist a large
number of systems in which a Lifshitz point may
occur. Of particular interest is the UAs, „S„
system whose phase diagram, as studied by Land-
er, Mueller, and Reddy, " shows transitions from
ferromagnetic to sinusoidal to antiferromagnetic
ordering as one moves along the A. line by varying
X ~

We thank Professor S. Alexander for helpful
discussions and Dr. D. Mukamel for comments on

1680



VOLUME $5, NUMBER 25 PHYSICAL REVIEW LETTERS 22 DECEMBER 1975

the manuscript.

*Work supported in part by the Commission for Basic
Research of the Israel Academy of Sciences and Human-
ities.

In principle, there exists a second invariant in the
fourth-order derivatives of ~. However, in a system
with translational invariance this term is identical with
that given in (1).

See K. G. Wilson and J. Kogut, Phys. Bep. 12C, 75
(1974); S.-k. Ma, Bev. Mod. Phys. 45, 589 (1973);
M. E. Fisher, Bev. Mod. Phys. 46, 597 (1974); and
A. Aharony, in "Phase Transitions and Critical Phe-
nomena, " edited by C. Domb and M. S. Green (Academ-
ic, New York, to be published), Uol. 6, for excellent
general introductions to the renormalization group and
its application to critical phenomena.

This point divides the ~ line into two segments (see
Fig. 1). The Lifshitz condition restricts the represen-
tations to which the order parameter may belong on
only one of these segments. See E. M. Lifshitz, J.
Phys. (Moscow) 6, 61 (1942); L. D. Landau and E. M.
Lifshitz, Statistical Physics (Pergamon, New York,
1968), 2nd ed. , Chap. XIV; I. E. Dzyaloshinski, Zh.
Eksp. Teor. Fiz. 46, 1420 (1964) (Sov. Phys. JETP 19,
960 (1964)]; S. Goshen, D. Mukamel, and S. Shtrikman,
lnt. J. Magn. 6, 221 (1974).

E. K. Riedel and E. J. %'egner, Phys. Bev. Lett. 29,
349 (1972); M. J. Stephen and J. L. McCauley, Jr.,
Phys. Lett. 44A, 89 (1973); T. S. Chang, G. F. Tuthill,

and H. E. Stanley, Phys .Bev B 9, 4882 (1974).
~We use the term helicoidal to include a variety of

periodic structures, such as screw and cone spirals
and sinusoids. Note that all the structures we are con-
sidering are not restricted by the system Hamiltonian
to be either right- or left-handed. They thus differ
from Dzyaloshinski-type spirals fL. L. Liu, Phys. Bev.
Lett. 31, 459 (1973)]. For a discussion of this basic
difference in a somewhat different context, see P. G.
de Gennes, Mol. Cryst. Liq. Cryst 7,. 325 (1969).

A. Yoshimori, J. Phys. Soc. Jpn. 14, 807 (1959).
J. Uillain, J. Chem. Phys. Solids 11, 303 (1959).
T. Kaplan, Phys. Rev. 116, 888 (1959), and 124, 329

(1961).
B. Bausch, Z. Phys. 254, 81 (1972); D. J. Amit, J.

Phys. C: Solid State Phys. 7, 3369 (1974).
10The system anisotropy will, in general, affect other

terms in (2) [and also in (5)1. This will be discussed
elsewhere.

The classical correlation-function exponents for a
I,ifshitz point are ~„=, ~g, =-,', g)4=pe, =o.

Alternatively, Eq. (4) can be obtained by examining
the divergence of the lowest-order diagrams contribut-
ing to the four-point function.

To first order in &q the critical exponent for a uni-
axial Ising-type Lifshitz point (i.e., d=3, m=n =1) are
0g4~ 0, v&4 = v/2/2 -0.31, &j =p) —0.25, l'( = 1.25, &g =5 0.

M. E. Fisher and D. B. Nelson, Phys. Bev. Lett. 32,
1350 (1974).

D. E. Cox, lEEE Trans. Magn. 8, 161 (1972) .
G. H. Lander, M. H. Mueller, and J. F. Beddy, Phys.

Bev. B 6, 1880 (1972).

Muon-Pair Separation Measurements and Comparison with Transverse-Momentum Models*

H. E. Bergeson, J. W. Elbert, J. W. Keuffel, f M. O. Larson, f. G. H. Lowe, 5 J. L. Morrison, and
W. J. West

Physics Department, University of Utah, Salt Lake City, Utah 84113

and

G. W, Mason
Department of Physics, Brtgham Young University, Provo, Utah 84602

IReceived 30 September 1975)

Bates of high-energy cosmic-ray muon pairs have been measured for separations up to
70 m. Detailed calculations imply that the mean transverse momentum (pr) of mesons
with x & 0.01 is 0.66 + 0;$0 GeV/c at laboratory energies of & 10000 GeV. We find that the
high-pz muons result mostly from decay of abundantly produced particles with lifetimes
& 10 8 sec, such as pions and kaons.

We report here measurements of pair separa-
tion distributions (decoherence curves) for deep
underground muons using a main detector and
auxiliary "outrigger" detectors. These data are
compared to predictions of Feynman scaling and
several p ~ models. Previous Utah decoherence

data from Coats et al. ' (analyzed by Adcock et al. '
with a different interaction model than used here)
had a significant systematic error because of the
loss of about a 20% contribution to main-detector
decoherence curves due to events with too large
a number of muons in the main detector. An ex-


