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Charged-particle motion across a sheared magnetic field and electrostatic wave is stud-.
ied. Resonant-particle orbit widths are derived; two parametric dependences are found in
the limits that the particle is near or far from the k~~

——0 plane, with a smooth transition be-
tween the two. The orbit widths are used to calculate diffusion coefficients in tokamak-
type configurations. These predictions are confirmed by test-particle computer simula-
tions in (x,y, v„,v~, v, ) coordinates employing a Monte Carlo collision operator.

At present there exists an order-of-magnitude
discrepancy between the electron thermal diffu-
sion observed experimentally and the smaller dif-
fusion predicted by the neoclassical theory. '
Pogutse' has suggested that resonant trapping by
an electrostatic wave, rather than trapping in the
nonuniform magnetic field, is responsible for the
enhanced electron thermal diffusion. Taking the
cross-field displacement of electrons trapped in
the wave as the elementary step of a random-
walk process, occurring in the presence of col-
lisions, he arrived at a thermal diffusion coeffi-
cient which agreed more closely with experiments.

However, it was noted, especially by Brambilla
and Lichtenberg' (BL), that shear in the magnetic
field might significantly limit the efficiency of the
mechanism proposed by Pogutse. BL derived an
expression for the orbit width of particles with
parallel velocities greater than the trapping ve-
locity of the electrostatic potential. They used a
Hamiltonian formalism to describe the motion of
a particle in tokamak-type fields in the presence
of a zero-frequency electrostatic wave and showed
that the wave potential combined with the toroidal
magnetic field created a series of drift orbits
which diminish in amplitude as the inverse pow-
ers of the aspect ratio. For a large-aspect-ratio
torus, the leading term, corresponding to a cy-
lindrical configuration with toroidal periodicity
and shear, is of primary importance. The re-
striction on particle velocity and wave frequency
imposed by BL allowed one to determine the in-
fluence of shear on orbit size for only a limited
parameter range.

This Letter presents a description of particle
orbits which allows for particles moving with
arbitrary velocities in a sheared magnetic field
and an electrostatic potential of the form y= p(k r
—ut) =—y(8). As done by Pogutse' the cylindrical
configuration is approximated by a slab geometry.

dv() —8
dt m (2)

We approximate the field in a rectangular coor-
dinate system by B = [0, b(x), B,) with b(x)/B «1
and B=

I Bl. k is taken to lie along the y axis, and
subscripts II and & refer to the parallel and per-
pendicular directions with respect to B. Shear in
B is modeled by expanding k~~(x) about x=x„ the
initial x coordinate of the particle, as

k (x)/k, = n+8, (x -x,),
where n =—k~~(xo)/k~. With some algebraic manipu-
lations Eqs. (1) and (2) may be reduced to rela-
tions among the differentials dx, dv~L, and dy.
These relations were integrated to obtain a quar-
tic equation for the half-width of the particle or-
bit, bx:

(nv~~, —(u/k, )ax + —,'(v~~, 8.+Qn') ax'
+ —,'Qno, hx'+-,'Q8, 'bx =(-e/m)h(p/Q, (4)

where v~~, is the initial parallel velocity of the
particle and 4y is the change in potential over
its orbit. When 8, =0, Eq. (4) reduces to the ex-
pression obtained by Pogutse'; while when ~ = o.
=0 and v~~o»(IeI b, y/m)'~', Eq. (4) reduces to the
results of BL.4

Considering only particles satisfying the reso-
nance condition k~~(xo) v~o= e, as these particles
will diffuse most rapidly, Eq. (4) reduces to

(n'+ P') hx'+ n8, hx'+ ~8,'6x'
= —2eny/m Q',

where P'=—v„,8,/Q. We have solved Eq. (5) nu-

(5)

Assuming e«Q =eB/m and k~p=k~v~/Q«1,
we can use the guiding-center equation of motion

dr B&Vy B
tft
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merically to determine the resonant particle or-
bit amplitudes as a function of the change in po-
tential. To obtain a better understanding of Eq.
(6), its behavior is examined in the regimes
where either shear or the change of the parallel
velocity (due to potential) limits the cross-field
excursion. The important parameter is

kp(xp) ' Q 1
P' k~ vpo 8~
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Taking 1/8, = I„ the shear length, and defining a
distance s —=L, [kp(xp)/k~], the distance of the res-
onance plane from the plane where k. B = 0, then
we have n'/P'=s'/(t-, vpp/Q), where vp, /Q is of
the order of a gyroradius. Setting 4@=yo, with

y, a characteristic wave amplitude, we obtain in
the limit n/P»1 that

(6)

with

ax~=~ n 'Q '(2(e jap/m)"',

which is the maximum drift amplitude obtained by
Pogutse, and

&x, = (- 8, 4xp/2n PQ)(v
p p + n Qhx~). (6)

In the limit n/p«1, we obtain the result of BL
generalized to finite ~:

ax,„=~ (2 [e i{en/mQ8, vpp) (9)

In both limits shear reduces the size of the orbit,
and hence the diffusion.

In the two limits there are quite different para-
metric dependences which can have important
consequences for diffusion. Considering a sto-
chastic scattering description for diffusion, i.e.
D~-hx'/ht, where bt is the mean step time, we
readily see that in the Pogutse limit Dj -(k~/kpB)'.
For a toroidal device we approximate k~/kp by
mqR/a, where m is the mode number, q=aB, /
BB~ is the safety factor with 8, and B~ the toroid-
al and poloidal magnetic fields, respectively, and
A and a the major and minor radii. Thus the Po-
gutse diffusion is strongly dependent on mode
number (D~~m') and classical in nature (D~~B ').
On the other hand, in the BL limit [Eq. (9)], the
diffusion becomes Bohm-like (D~~B ') with de-
pendence also on shear and parallel velocity.
Keeping all dependenees, Fig. I shows 4x ob-
tained by solving Eq. (6) numerically. As is clear
from this figure, 4x extends smoothly from one
limit to the other, fitting the analytic approxima-
tions of Eqs. (6)—(9). We also note from Fig. 1
the obvious but important fact that 4x is limited,

FIG. 1. The three curves shown illustrate the varia-
tion of the half-width of election orbits in the E & B di.—

rection, ~, versus n /P = [kp{xp)/k~P{&~/vpp. Each
plot is obtained by varying one system parameter,
[kp {xp)/k~1, &, or t „while holding the others constant.
The units are arbitrarily normalized by setting k~ = 1
and vpp ——0.01. eppp/m =5 x 10 P throughout. (a) ~ ver-
sus 0 for L~=10, k~[(xp)/k~=0. 008. (b) ~ versus
[kp (xp)/k~ P x 10 for t ~= 10, Q= 1. {c)Ax versus L~
x 10 for i)=1, kp(xp)/kj =0.005.

approximately, to the predictions of either Eq. (6)
or (9), depending on which gives the smaller val-
ue. Thus for a given physical case, we can es-
timate b,x from the smaller of the two limit form-
ulas.

In either the case for which the velocity changes
limit the orbit amplitude as in Eq. (6), or that for
which the shear limits the amplitude as in Eq.
(9), the diffusion may be classified according to
the magnitude of the collision frequency. In ap-
plying our results we distinguish between two im-
portant regimes: (a) the "football" regime for
which v, ff =Tv/ep «us, where v is the collision
frequency; (b) the plateau regime for which v, f f

v ff ls the effective collision frequency for
scattering out of the potential well. ~~ is the
bounce frequency found by linearizing the equa-
tions of motion for small excursions of 61 and x
about a fixed point of the motion, and thereby
obtaining an equation describing simple harmonic
motion, with frequency

(o, =k,[(n'+P') ( e
~ q, /m]'~'. (10)

To examine the diffusion rates, for a given to-
roidal device, it is necessary to determine which
is the appropriate regime.

We model the shear by 8,= 1/Rq, and take k~
=m/a and kp=O(1/Rq). The condition for shear
to be the amplitude-limiting factor (n/P «1) be-
comes, for electrons, m'&a'/p, Rq. If one as-
sumes that the fastest-growing modes have m
—a/p;, then this inequality is marginally satis-
fied for present-day tokamaks and well satisfied
for fusion reactors, indicating that shear will
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D, = (ecp/T)'p'(k, /k )ak u . (12)

This regime is mentioned for completeness. Im-
plicit in our derivation of Etl. (11) is the assump-
tion that resonant particles dominate the diffusion
process. To test this assumption as well as the
parametric dependences of this equation we used
a guiding-center code to simulate a Lorentz plas-
ma with a Maxwellian distribution of particle ve-
locities in a shearless magnetic field and elec-
trostatic potential. This code' follows the motion
of hundreds (typically 512) of noninteracting "test"
particles in two spatial and three velocity dimen-
sions subject to the externally applied E and 8
and to a collision operator' which simulates the
three-dimensional velocity scattering of electrons
by stationary ions. The perpendicular diffusion

limit the orbit amplitude and diffusion.
If the diffusion is occurring in the "football"

regime, then the condition v,qf&&~, considered
in the regime for which shear is unimportant, re-
duces with the help of Eq. (10) to (ey/T)' 'A/Rq.
& 1, where ~ is the electron mean free path. For
typical present-day tokamak parameters, 10"
~ n ~5 & 10" cm ', 1 & T &2 keV, and R q'=2 m,
we find that for the highest density and lowest
temperature (smallest X), ey/T «0.5 is in the
"football" regime; while for the largest ~ this
ineIluality becomes eqp/T ~0.007. Below these
values of ey/T the plateau regime would be the
appropriate one.

We now wish to be more explicit about the fac-
tors governing the particle diffusion and to dis-
play a particle simulation that verifies the de-
pendences of these factors. The diffusion coef-
ficient for stochastic scattering is given as usual
by&& =(~')v, IIfr, where (~') is the appropri-
ate average over drift-orbit amplitude, and fr
= (ey/T)' ' is the fraction of particles which are
trapped. For the shearless case D& reduces to
the simple estimate of Pogutse, '

D = (ey/T)' 'p'(k /k )'v (11.)

As was emphasized by Pogutse this equation is
essentially of the form of the pseudoclassical
formula' and for k&»k

~~
the diffusion might be

substantially enhanced.
In the plateau regime, the particle is likely to

suffer a collision during the time of traversal of
a drift orbit. Estimating the probability that a
trapped particle completes its orbit before suf-
fering a collision to be (~e/v, II), we obtain D ~
=(M)'&uefr. For the shearless case this re-
duces to

Bun k„/k~~ 0/cu& eV/T D~~[{L/2x)~&a& j ~ D +/D +I"~
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coefficient is obtained from the mean square de-
flection of particles across B divided by twice
the time. Keeping all parameters, except one,
fixed, the dependence of D~ oney/'T, 0, and
k~/k

~~
predicted by Pogutse, ' EIl. (11), has been

verified by this code. Table I illustrates this,
listing the simulation results for the perpendic-
ular diffusion coefficient, D&*, for the param-
eters indicated. D&* reached an asymptotic val-
ue in a time - 1/v with an experimental spread
as given in the table caption t the spread scaled
roughly as (number of particles) ' ']. The D~*'s
were normalized using a representative run. The
attempt to equate the normalization coefficient
with that derived analytically by Pogutse is not
appropriate because of the different approxima-
tions made in each case. (For example, Pogutse
considers only electron-electron collisions. ) The
results confirm the parametric dependence of the
diffusion coefficient given by EIl. (11).

We have derived and solved a quartic equation
for the half-width of particle orbits in the pres-
ence of a weakly sheared magnetic field and of
an electrostatic wave. By examining the quartic
equation we have shown that there are two com-
peting mechanisms which change the phase of

TABLE I. Results of computer-simulation parameter
studies of the cross-field diffusion coefficient, D~+,
listed for representative runs in the shearless case,
"football" regime, and compared with the theoretically
predicted values from Eq. (11) normalized using a typ-
ical case, D~+&"~. The normalizing runs are indicated
by "(n)." The units used are arbitrarily set by choosing
the system length in the direction of E, I.=2m. , and the
plasma frequency, ~&~ = 1. Periodic boundary condi-
tions are used. In all examples e/m = 1 and for the po-
tential, p, P = 1, e = 0. The parameters varied are giv-
en explicitly. In addition, in runs 1-4, z&

——0.012125,
vcorr ——10; in 5 and 6, vg

——0.0012125, v~0, g
——10 . The

spread in the experimental data for D~* is 4-8% for
1-4 and 8-12% for 5 and 6. The higher ep/T of runs
1-4 were chosen to allow larger v«~~. More accurate
determination of D~* could be made in these cases. In
all the simulations, the agreement with theory is well
within the experimental spread in the data.



VOLUME 35, +UMBER 24 PHYSICAL REVIEW LETTERS 15 DECEMBER 1975

the electric field seen by the particle so as to
limit the size of the drift orbits. One arises
from the change in velocity along the field lines
(Pogutse mechanism). The second arises from
the shear (BL mechanism). A criterion is found
to determine which mechanism predominates.
Orbit sizes obtained from the quartic equations
and particle simulations agree with the above
conclusions. For the case without shear, parti-
cle simulation of the diffusion substantiates the
predicted parametric dependence of the perpen-
dicular diffusion coefficient.
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