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A sufficient condition is obtained for stability of low-frequency kink perturbations of
an astron-type partio1e ring embedded in a dense low-temperature plasma.

There is renewed interest in the use of intense
beams of high-velocity particles in toroidal as-
tron configurations. ' ' Such beams may allow
the confinement and heating of a plasma at fusion
temperatures and densities; It is desired to have
the directed kinetic energy density of the particle
beam as large a fraction (p) as possible of the en-
ergy density of the externa1 magnetic field. Sta-
bility requirements on the low-frequency magne-
tohydrodynamic motion of the beams are expect-
ed to impose upper limits on the allowed P values.

In the astron system first proposed, ' the exter-
nal magnetic mirror field is canceled on axis by
the poloidal self-magnetic-field of a beam of rel-
ativistic electrons. 4 The use of a beam of high-
velocity nonrelativistic ions" has the important
advantage that the incoherent synchrotron radia-
tion is negligible. Field cancelation on axis pro-
vides a closed magnetic field suitable for confin-
ing a high-pressure plasma, and it requires that
the kinetic energy density of the particle beam be
a fraction P) 1 of the energy density of the exter-
nal magnetic mirror field. The magnetohydro-
dynamic stability of an astron configuration has
been previously studied' with, however, the re-

strictive assumption that the relativistic elec-
trons may be treated as rigid and immobile. A
detailed analysis of the low-frequency stability of
astron- and tokamak-type particle rings including
the beam dynamics has recently been completed, '
and I summarize here some of the results for as-
tron configurations.

The analysis is done in linear cylindrical geom-
etry, with coordinates (r, H, z), where the z axis
coincides with the axis of the unperturbed beam.
This assumes that the inverse aspect ratio is
small, a/R «1, where a is the minor radius of
the torus and R is the major radius. The toroid-
al nature of the actual system enters through the
requirement that the perturbation quantities be
periodic over the axial length 2vR. Hence the
perturbation quantities have a 0, z dependence of
the form exp(im8+ikz), with the wave number k
= n/R, where n and m are integers. Approxima-
tions made in describing the beam dynamics re-
strict consideration to m =+ I, g g0. Toroidal
effects on the beam-particle dynamics are dis-
cussed in the final paragraph.

A dense plasma is assumed to fill the region
occupied by the particle beam. The plasma may
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extend beyond the beam, with density n~(r), out
to the radius r of the conducting vessel wall.
Low-frequency perturbations are considered pro-
portional to exp(-i~t) with l~l«&u„= leBI/Mc,
where M is the plasma-ion mass, for simplicity
Iel (e) is the plasma ion (electron) charge, and B
is the equilibrium magnetic field. The plasma
temperature is assumed sufficiently high so that
collisions may be neglected. However, the plas-
ma pressure is neglected, and thus the equilibri-
um has no plasma currents. For astron-type con-
figurations, the equilibrium magnetic field in the
linear geometry is due to the z-direction current
density of the particle beam, that is, Je= J~(r)z
and B=B (er)8. A possible toroidal (B,) field is
not included in the present work.

I consider situations where (a) the Alfvdn speed,
vA= IBI/(4wn~M)'. ', is much smaller than the
speed of light c; (b) the plasma frequency,
=(4''n~/m, )'~', is much larger than c/a, where
m, is the electron mass, and a is a measure of
the beam radius; and (c) there is local charge
neutrality. Under these conditions, the equations
of ideal magnetohydrodynamics apply, and we
may introduce the plasma Lagrangian displace-
ment g, with 6v~= &$/&t, where 6v~ is the plasma
velocity perturbation. Thus we find

g M + ~BX—=5=F——M xB,
~t c ~t c

where F( $) -=(V xQ) xB/4~, Q = V x(( xB) = 6B, (1/
c)BxS)/at=&E, $ B=0, nz(r) is the beam densi-
ty, and q is the beam-particle charge. Equation
(1) is completed by supplying the relation of 5Jz
to the perturbation fields 6B and 6E.

The operator F($) in Eq. (1) is self-adjoint for
the relevant boundary conditions. ' Thus for a
complex eigenfunction solution of Eq. (1) of the
form $(x) exp(-i&et), we obtain the "energy equa-
tion, "

tions on z, and the fact that $„vanishes on the
conducting wall. For simplicity we consider that
the plasma parameters vary smoothly out to the
wall so that there are no. surface or vacuum
terms.

Solving Eq. (2) for &u gives

S,(W+ S'/4r)"'
2

Evidently, the beam-plasma perturbations are
stable oscillations if W is real and W+2'/4T ~ 0.
Because Z'/4T & 0, a general sufficient condi-
tion for stability is that W be real and positive.
Under appropriate conditions, I find that F in Eq.
(1) is a self-adjoint operator on g so that W is
automatically real. Thus there is a variational
principle where min%'& 0 implies stability. A
general, less restrictive, condition for stability,
min(W+S2/4T) &0, is not used in the present
work.

We now derive an equation for the center of
mass of the beam, e, for the kink perturbations
(m = + 1, n y 0). The beam is considered to be a
nonrelativistic ion beam of density nz(r), and
ion mass and charge M~ and q. (For a relativis-
tic electron beam, M~ is replaced by ym„where
y is the usual Lorentz factor. ) The unperturbed
motion of the beam particles in the self-magnetic
field B is collisionless and consists of a rapid
chaotic betatronlike motion within the beam radi-
us. With x~(t) denoting the unperturbed position
of the 0.th beam particle, we write the perturbed
position as x~(t) + e, where e = e„(z, t)x + c,(z, t)y"

is the same for all particles in the cross section
z =const. We consider beams with (a) lv, l»vA,
where v, is the mean velocity of the beam parti-
cles; (b) v, approximately independent of r;
(c) hv, «lv, l, where b,v, is the "thermal" spread
in the axial velocity of the beam particles; (d) v„',
v,' «v, '; and (e) I ha I » vJI v, I «1, that is, n g 0.
Under these conditions we find that

(d T + (d+ = W =—fd X I Q I
8m

+ fd~xg—* ~ (5J xB), (2)
2c

c„=im Ae 2 —ug2 ~ 5B
M~c

= ZtPl6„,
(4)

where

T= zMfd xn~IEI-, iC=—Jd'xnzB ~ (]+x().
C

T is real and T~O, and S is real and 4&0. The
volume integrations extend from z = 0 to 2mB and
over the cross section out to the conducting wall.
The surface terms involved in obtaining Eq. (2)
vanish because of the periodic boundary condi-

where cu z' =2wqV, (J~)/M—sc' is the self-field beta-
tron frequency, and (. . .) is an average over the
x-y plane weighted with the equilibrium beam
current density Jz(r} For lon. g-wavelength per-
turbations, IAV, I &+8, the beam displacement is
in the direction of the Lorentz force on a beam
particle, qv&& 6B. Note that the finite thermal
spread &o, of an actual beam prevents the reso-
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nant factor in Eq. (4) from becoming unbounded. Using the above assumptions and the continuity equa-
tion for the beam particles, we may write the beam current-density perturbation as

6Ja = —(e ~ V)Jaz + iJ'eke.

The terms on the right-hand side of Eq. (2) are written as W= Wz+ WI, where Wz-—(6n) ' jd'x I@I'
-0, and W, is the "interaction" term involving 5Js. Using Eqs. (4) and (5) we find

(nR/2c)(qv, /M c)I 1 e,

(5)

(6)

where Is is the total beam current. The numera-
tor of Eq. (6) is & 0. A slight generalization of

the derivation of Eq. (6) shows that the right-hand
side of Eq. (1) is a self-adjoint operator F($).

A sufficient condition for stability of the kink
perturbations is Wt&0, or Ikv, I&&ua, for all rele-
vant wave numbers. For lkv, I & &os, a field per-
turbation 6B causes a beam displacement which
tends to reduce IGBL Because the smallest Ik I

allowed is 1/R, a sufficient condition for stabili-
ty is A. s & 2nR, where Xs —=2mlv, I/~s is the self-
field betatron wavelength. For an astron, the
major radius R =gMsv, c/qB„where B, is the ex-
ternal magnetic mirror fieM, and g is a dimen-
sionless parameter of order unity. ' (The repul-
sive effect of the beam self-field acts to increase
g, whereas the confining effect of the outer con-
ducting wall acts to decrease g.) Thus, for a
constant den-sity beam (r &a), the sufficient con-
dition for stability may be written as

P=4nnsMsv, '/B, '&2/g .
For comparison, the condition for reversal of the
direction of the total magnetic field on axis is P
& (2/a'g)(R/a)'. The stability condition is compat-
ible with field reversal for small aspect ratios,
R/a & (n/g) 'i'

The dynamics of beam particles in a toroidal
ring is not fully described by the linear beam
model used here. These toroidal effects break
the twofold degeneracy of the motion for a given
n and are important for the n =1 precession mode
[ring displacement in the plane of the ring, s„=0,
a~~exp(iz/R), and plasma displacement $„, $,
~sin8 exp(iz/R)]. With toroidal effects included,
we find' that Eq. (7) is a sufficient condition for
low-frequency stability of all kink perturbations
but not a sufficient condition for stability of the
n = 1 precession mode.
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