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to the deformation through nuclear forces, and
hence should have a larger B (E1). In this two-
component model the observed B (E1) asymmetry
would require the quantity V(coupling)/~ in "N
to be 60%%uo of its value in "C.

In a more detailed shell-model calculation the
process is more complex since once the contribu-
tion from the large components cancel, weaker
components of the wave functions also play a role.
In particular, the E1 decay of the (2,T =-,') state
to the 2' state must proceed via components of
the &' state with T = 1 parentage in the A = 12
core. Experimentally these B (E1) values are
about an order of magnitude weaker than those of
the (—', '--,' ) b.T =0 transition and are at present
impossible to calculate with sufficient reliability.

The prominent case of the (-, "- a ) asymmetry
exhibits great sensitivity to details of the nuclear
structure, but it seems to be understandable in
terms of the "C-"N binding-energy difference
without invoking charge-dependent nuclear inter-
actions.
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ergy Research and Development Administration.
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Good polydomain SrTi03 samples show, for T —T,+, paramagnetic resonance-linewidth
broadening ~(T) of the Fe +-Vo center which is the average of EH~~(T) and AH~(T) of
monodomain samples. Application of [110j and [100] stress on these samples enhances
and reduces ~(7'), respectively. This verifies the Ising and Heisenberg character of
the transition in monodomain and annealed samples, respectively. In the Ising mono-
domain case the correction to the scaling exponent of the order parameter is found to be
x &0.5 in agreement with renormalization group theory.

Following the discovery of critical behavior in
the temperature dependence of the order param-
eter in SrTiO„' calculations using the renormal-
ization-group theory have been made to obtain
the static critical exponents. ' Of interest is the
topology near the structural second-order phase
transition T,.' At T, the cubic anisotropy is re-
normalized away and the fixed point is of the
Heisenberg type. '4 Because the system is cubic,
for T &T, its symmetry can be lowered by the ap-
plication of uniaxial stress P[nPy], and a variety
of phase boundaries T(P[nPy]) can join in at T,
The total hypercriticality at T,= T, (P = 0) includ--

ing the various staggered fields of antiferrodis-
tortive ordering has not yet been worked out. For
compressive and tensile stress P[100] along a
cubic [100] axis, the system has a topology' like
the uniaxial antiferromagnet near the antiferro-
magnetic spin-flop bicritical point. However,
in SrTiO„ the flop line is in common with the
temperature axis T, whereas in the magnetic
case there is a skewed one. ' In the tetragonal

phase, the lattice is elongated along the c axis,
i.e. , c/a&1. ' Therefore, application of a tensile
stress along a [100] direction supports the elon-
gation. This enhances T, and one obtains a mono-
domain in the low-temperature phase. Because
below T, the direction of the rotational order pa-
rameter is fixed, tensile stress P[100]&0 yields
an n = 1 Ising-type phase boundary. For P[100]
& 0 two kinds of monodomains along [010] and
[001] are formed and thus at T, an n = 2, XY sec-
ond-order phase boundary originates, too. ' There-
fore, in the P[100]-T plane T, is a bicritical
point, ' and the transition temperature shift expo-
nents g for the two boundaries are equal to the
changeover exponent y = 1.25, respectively. "

The earlier measurements of the temperature
dependence of the order parameter have been
carried out on monodomain samples' to achieve
a better accuracy near T,. The experimental val-
ue obtained gave P = 0.33+ 0.02.' Because of the
uniaxial character of the sample, the Ising value

P, —= P(1) =0.315 rather than the Heisenberg P„
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—= P(3) =0.37 is expected if the crossover from
cubic behavior does not occur too close to T,.
Aharony and Bruce' have suggested from the an-
isotropy in EPH linewidth of the Fe"-Vo center
that the crossover occurs sufficiently far away
from T,. Indeed, the linewidth anisotropy for ro-
tations y around the monodomain' axis, LUX

tt
and

the one perpendicular to it, ~~, extends about
15 deg above T,.' The earlier interpretation of
this observation has been in terms of a cubic an-
isotropy in the quadratic part of the Hamiltonian. '
However, it has been shown that this part in the
Hamiltonian is vanishing for sufficiently high or-
der in e =4-d for T-T,+.' Therefore, two types
of experiments have been performed to check the
new suggestion': linewidth measurements on
high-quality polydomain samples to obtain the
Heisenberg behavior, and application of definite
stresses on such samples to reproduce monodo-
main v = 1 Ising and, in addition, n =2 XF-model
behavior. All experiments were successful and

are described below.
In the absence of stress or strain, the approach

to T,+ mill yield isotropic fluctuations ~ due to
the Heisenberg e = 3 character. These are aver-
ages of AP g and ~z of the s = 1 or ~ = 2 systems.
The samples used were grown by National Lead
Company with the Verneuil method in 1963. These
12-yr-old samples showed the smallest internal
strain and spread in T,. Thermal annealing of
more recently produced crystals gave less sat-
isfactory results and more spatial variation in

T,. Figure 1 shows the data points for a cylin-
drical sample of 1.45-mm length II [001] direc-
tion and a diameter of 1.95 mm, for H II [110]with

P =0. The resonance consisted of a single line at
2920 G using v=19.2 GHz. Away from T„cubic
anisotropy is present. Therefore, a broad and a
narrow line are expected due to "pancake"-type
clusters with Ear~ and h~„ if their mobilities are
sufficiently slow. ' As we see only one line, these
mobilities ave fast enough compared with the
EPR linewidth of b, (A)(T) = ~/@pe that one aver-
aged line is observed. On approaching T„a
slowing down occurs and bB(T) increases to a
finite value at T,. However, by then the cubic an-
isotropy has become small enough that Scab —her„
«EaI(T). Finally, in a, Heisenberg regime, of
course, only one line is expected for T,+.

Extrapolation of ~(T) to T, =T, yields ~(T, )
= 10.5 G which is below the monodomain value

~II(T, ) = 17.5 G but above ~~(T, ) of 6.7 G. The
center-of-mass relation —,(~II+ 2~~) = bp(T, )
= 10.5 G is found to hold, indicating that the value
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FIG. 1. EPR linewidth broadening of the Fe +-U0
center in polydomain samples for zero stress P, and
[001] stress, n =2, and [110[stress, n =1, cases, re-
spectively. 1 kp (kilopond) is equal to 9.80665 N.

obtained in the polydomain sample is indeed the
average of the axial values measured in the mono-
domain sample. This result, although very sat-
isfactory, should not yet be overrated because in
the above relations, the critical and noncritical
parts of the fluctuations 6cp =(6y'(T =T,))'/' are
present. %e recall that in the slow-motion re-
gime for H II [110], 5H =46' with A =26 G/deg
holds and 5II =~—~~. Now the noncritical
fluctuations contribute about ~~= 5 G in the poly-
domain sample and ~, =2.9 G and ~, = 3.5 G
in the monodomain, respectively. This diff er-
ence of about 2 G is not understood. It could re-
sult from larger inhomogeneous static strains in
the crystal due to its polydomain character. This
static strain apparently has a smaller distribu-
tion in the uniformly strained monodomain sam-
ples. In the latter, a substantial fraction of the
background width ~~- 3 G is due to "white-
noise" noncritical fluctuations extending up to 11
cm"' in frequency and yielding a nonsecular re-
laxation. "

In order to substantiate the suggestion' further,
uniaxial stresses were applied to induce the ~ = 2

and n = 1 regimes and with them to estimate the
"equivalent stress" present in the monodomain
samples. This could be accomplished in our ex-
perimental setup despite the fact that stress can
only be applied perpendicular to the external mag-
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FIG. 2. Geometries for Ii&P of the magnetic field
Kll {110}and stress P for (a) {001},n =2, and (b) {110},
n =1, cases realized in the experiments of Fig. 1.

netic-field direction. Further, one should bear
in mind that fluctuations 5q are always probed
around a direction e which is perpendicular to
the plane in which the magnetic field II is lying.
Thus for H II [110], fluctuations around [001]are
detected (see Fig. 2).

In a first experiment, stress was applied on the
(001) faces of the cylindrical polydomain sample.
The stress and magnetic-field orientations are
shown in Fig. 2(a). Below T„evidently (100}
and j010j domains are favored (c/a & 1). This is
the n = 2 case. The measured fluctuations by[001]
occur a,round a perpendicular direction to these
{100]a.nd (010] domain orientations. Thus, one
expects ~~ to be reduced. This is indeed the
case as the lower curve in Fig. 1 shows for I' = 2
kp/mm' (1 kp= 9.80665 N).

To reproduce the Ising n= 1 regime, a cylindri-
cal sample with (110) faces of diameter 1.3 mm
and length 1.6 mm, was carefully machined from
the same 1963 boule. Application of stress to
these faces [see Fig. 2(b)] induces a (001] do-
main below T,. Thus, this is an Ising transition.
Figure 1 shows the linewidth data for T -T,' for
P = 3 kp/mm'. Because the [001] fluctuations are
now chosen around the preferred Ising axis, they
are enhanced. The compressive stress of 3 kp/
mm' along [110]corresponds to an equivalent
pulling stress of —', = 1.5 kp/mm' along the [001]
axis. The enhancement observed of 2.8 G at T

=T,' is the same as the depression at T =T, for
the n =2, P[001]=2 kp/mm' case. Thus the en-
hancement for n =1 is 1.4& 1.5= 2.1 times the de-
pression for n=2, i.e. , twice as large. This is
expected and completes the verification of the
suggestion' whose origin resulted from a discus-
sion of Courtens" who measured the birefring-
ence in the monodomain sample b,n =ntt —n~.
These measurements gave, within experimental
accuracy, the same fluctuation amplitudes 5@~
and 5p~t as EPB in the slow-motion regime. Hat-
ta" has observed in recent specific heat mea-
surements a clear difference especially in ampli-
tude of strained and strain-free samples. For
the former he obtained a positive critical expo-
nent of 0.08 to 0.25 which brackets the Ising val-
ue of e =0.125.

From the enhancement of 2.8 Q observed, we
can estimate the "equivalent stress" present in
the monodomain sample. Approximating 5(~)
~P near T„and noting that ~~~(T ) ~(T ) a'I
G, the "equivalent stress" is of the order of 6-7
kp/mm', an apparently high value. It is due to
plastic deformation of the monodomain sample by
grinding down the 0.3 mm-thick [110]platelets. '

With the Ising character of the monodomain
samples established for T —T,' ~ 15 K we assume
this to hold also for T," —T ~ 7 K. Thus we know
P(l) = 0.315 from high-temperature expansions
and can analyze the crossover behavior of our
accurate measurements' to classical behavior.
We set, according to a proposition by Binder, "

where x is the correction exponent Bnd Ay the non-
universal amplitude. Then, putting y, (T) = y, (l
-T/T, )

s(') for the critical part, simple algebra
gives

+v8(~) + v8(~)
C

1/8(1)(1 T/T )1+x

The exponent x has been calculated by Wegner"
to be x = 0.5+ 0.05 using renormalization theory
and expansion to order e, and more recently by
Saul, Wortis, and Jasnow" with a twelve-term
high-temperature series. Thus plotting (cp'/s ')
—q,"s('))' ' should give a straight line. This is
done in Fig. 3 with the data of Ref. 1. It is seen
that for T -T, there is a "hanging through" of
the p01Ilts Ileal T lndlcatlng that x & 0.5. This
would conform with the numerical solutions of
recursion relations by Swift and Grover" who ob-
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FIG. 3. Static changeover behavior of the order
parameter y(T) in the SrTi03 monodomain, n = 1 Ising
samples measured in Ref. 1.

tained for n = 1, d = 3, x = 0.64."
In summary, the topology and crossover be-

havior in the [001[-stress-temperature plane
near the bicritical point of the SrTio, structural
phase transitions has been elucidated and agrees
with the present theoretical understanding and
numerical estimates.

One of us (K.A.M. ) has profited from illuminat-
ing discussions and correspondence with A. Aha-
rony, A. D. Bruce, K. Binder, and E. Courtens
and a critical reading of the manuscript by them
and H. Beck.
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