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Temperature Dependence of Pyroelectricity
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An expression is derived for the "primary" pyroelectric coefficient. In contrast to
currently accepted theory, it is proportional to T near absolute zero, and it depends on
the anharmonic potential in the same @ray as on the second-order dipole moment.

The pyroelectric effect is usually divided into
two parts, namely into the effect occurring when
the crystal is heated "clamped, " i.e. , at constant
volume and shape, and the effect due to the small
changes of size and shape which occur when a
free crystal is heated. For purely historical rea-
sons, the first is usually called the true or pri-
mary and the second the apparent or secondary
pyroelectric effect. We shall denote the primary
pyroelectric coefficient by II, and the secondary
by II2.

The currently accepted theory for the primary
pyroelectricity is due to Born. This theory in-
dicates that at very low temperature II, is pro-
portional to the temperature T and thus domin-
ates the total effect, since II, is only proportion-
al to 7'. Born also concluded that Hy is due es-
sentially to the second-order dipole moment. In
contrast, I shall show that in the low-tempera-
ture limit II, is in fact proportional to T' and not
to T, and also that II, depends on the cubic poten-
tial in the same way and in the same order as on
the second-order dipole moment. This latter
conclusion was to be expected from the author' s
earlier work on the anharmonic contributions to
the static dielectric constant' and its temperature
derivative. '

The pyroelectric coefficient represents the
change produced in the macroscopic dipole mo-
ment by heating. I shall exclude cases where
heating produces phase transitions; with this re-
striction, and in the absence of external forces,
pyroelectricity can only occur in crystal struc-
tures exhibiting permanent polarization. I shall
also exclude ferroelectricity, i.e. , the case
where a weak external electric field can change
the direction of polarization.

If M is the macroscopic dipole moment of the
crystal and N the number of moles, we intro-
duce P defined by P =M/N . I normalize to a
mole rather than to unit volume, because in
changes of density one should compare the dipole
moment produced by the same amount of materi-

al. Heating of a noncubic crystal produces small
changes in shape as well as in volume, both of
which can be specified by the macroscopic strain
tensor s, with components s;. If 0 is the macro-
scopic stress tensor, we can thus write

&(y & g c ~& z ~ a

It will be understood that in all the differentia-
tions throughout this paper the macroscopic elec-
tric field is also kept constant, and that this con-
stant value is zero or near zero. If on the left-
hand side of Eq. (1) o' is also zero, then the left-
hand side is the total pyroelectric coefficient II
of the free crystal. The first term on the right-
hand side is II, and the second is II,.

In some crystal structures the direction of p
may change with heating. I shall exclude this ef-
fect as it does not affect the nature of the results
but it complicates the equations.

We now consuier Ox for an infinitely periodic
crystal. Following Born and Huang's procedure~
[cf. their Eq. (39.19)], for a given macroscopic
strain the equilibrium configuration is chosen to
be the one of minimum potential energy compati-
ble with the strain, and the normal coordinates
Q; measure the displacements from this config-
uration. The periodic boundary condition assures
that the displacements do not change the macro-
scopic strain. In a displacement the molar di-
pole moment, up to second order, is equal to Po
+g a,Q, +g pt; QtQ;, where po is the moment
in the undisplaced configuration and the o and P
are expansion coefficients. The Q, are the active
normal coordinates, i.e., those which produce
uniform polarization in the direction of P. For a
diatomic crystal there is of course only one ac-
tive mode. The macroscopic value p is therefore
given by

P=P. Z~.(Q.) Z P»(Q, Q, ).
a jj'

Since we imposed the condition that the electric
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field is zero and since this condition is also valid
for the free transverse-optical waves, it follows
that each n, and v, is equal, respectively, to the
effective charge and the frequency of the corre-
sponding long-wave transverse-optical mode. In
this connection it may be noted that by symmetry
P is always parallel to one of the principal axes
of the dielectric tensor.

Similarly to P, all other quantities are also
normalized to one mole of substance. For 8',
the potential energy of the displacement, we
write, to third order,

Let nj, n;. , nj etc. , denote the quantum numbers
of the various lattice modes in a particular vibra-
tional state and nj', nj. ', nj"' etc. , the same
quantities in another state. Further, n will be
an abbreviation for all the quantum numbers in
the first state and P. ' for the quantum numbers in
the second state. ThusH and n' each specify a
vibrational state. In the state I, 4-„will denote
the vibrational wave function in the harmonic ap-
proximation. Treating the cubic terms in 8' as a
perturbation, for the perturbed wave function 4-„
we write

As the potential and the dipole moment are giv-
en as a power series in the Q, the expectation
value P is obtained as a power series in the ma-
trix elements of the Q (cf. for instance Ref. 3,
pages 275 and 276). Equation (4) contains, apart
from P„ the terms which are of lowest order in
the matrix elements. It can be easily verified,
that the neglected terms are of higher order in
the matrix elements, i.e., they contain higher
powers of I.

It is thus seen that in Eq. (4) the cubic poten-
tial terms and the second-order dipole terms,
represented by the u, b, q~ and the P», respective-
ly, appear in the same order. The terms in
n, b,jj represent the fact that, in the direction of
P, positive and negative displacements a.re not
equally probable and hence the (Q,) change with
vibrational amplitude even at constant strain. I
also point out that while the b,» and P» would

vanish in crystals with symmetry centers, in
pyroelectric crystals they do not.

We note that Cj, the contribution of the jth vi-
bration to the specific heat, is given by Cj
=5~~(8n~/BT }. Since the primary pyroelectric
coefficient II, is (BP/&T)„and since the various
parameters in Eqs. (2) and (3) depend only on the
macroscopic strain s, from Eq. (4) we get

a ajj

where the Dirac brackets of course represent
matrix elements between unperturbed states. We
first consider the case when there is only one

Q, . For the expectation value of Q, in the per-
turbed n state we have

n'An

&n'l Q, ln) is nonzero only for those two states 8'
for which n, '=n, +1 or n, '=n, -1, and nj'=nj for
all j except j =a. For these two states 4-„.„ is
nonzero only for terms of the type Q,Q&'. Insert-
ing the appropriate values and neglecting the fact
that the contribution is somewhat different from
the one term where j =a, we obtain

(&Q ))„-=—Q g D k gy (tEg + 2 )k /QP Ccl y .

For several active modes, we sum over a. In
Eq. (2), in the lowest order Q P».&Q;Q& ) =P P»
&& &Q&') =PP&&(n;+2)km'~. Taking the thermal aver-
age over the quantum numbers we thus get

(4)

Born's expression is written for p -p, ; apart
from the different normalization, at this stage
his P» terms are identical with ours in Eq. (4),
but the anharmonic-potential terms are missing
from his expression. Born then considered very
low temperatures where only the very long acous-
tic waves are excited and the Debye approxima-
tions should be valid. He replaced the P~~ by a
constant, independent of j, so that p -po became
proportional to g(H&+2~)ltu& He sho.wed that this
sum is proportional to T' and therefore conclud-
ed that at low temperature P -Po~T2 and II, ~T.
As it is generally accepted that II, varies with
temperature as the specific heat and hence H,
~T' for small 7.', it followed that the pyroelec-
tric effect was dominated by II„at least at low
temperature.

In fact, however, at low temperature it is un-
justified to replace the P» by a constant which is
independent of j, because for long acoustic waves
P» varies strongly with wave number kz. As kI
=0 represents uniform translation, which cannot
affect either potential or dipole moment, and as
P», b,», and ~z' must be even functions of kq, it
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follows that P~&, b, &&, and co~' vanish for k& ——0,
and for small k& all three must be proportional
to k&' and hence to each other. Thus we may put
b, q~

= b,~'~y' and P~~ =Pq'(uq', where b,&' and P&'

are independent of the magnitude of k& but depend
on its direction and on whether the jth wave is
longitudinal or transverse. Considering first the
P for longitudinal waves, we have

Q pqq Cq/~q' =Q pq'(Hq, cpq) C q((oq), (6)

p, =(p, p '; )c„(p;'g ' )c, .

(7)

As both C& and C& are proportional to T', Eq.
(7) shows that II, is proportional to T' at low tem-
perature. Moreover, as also II, ~T', it follows
that II ~T' and there is no reason to think that II,

Born's theory was connected with earlier ex-
perimental measurements by Ackermann, ' which
were believed to imply proportionality between II
and T at small T. This interpretation of the mea-
surements was never really justified as below
100'K Ackermann only measured II at 23 and
88'K. Moreover, more recent measurements"
seriously disagree with Ackermann's low-tem-
perature data.

Heiland and Ibach' measured the pyroelectric
coefficient of ZnO down to 9 K and at low temper-

where the sum goes over the longitudinal modes;
0; and y& represent the direction of k& in a spher-
ical coordinate system where the polar axis is in
the direction of the permanent moment P. The
P&' depend on direction because they represent
the dipole moment in the p direction, and be-
cause it is as a result of the asymmetry in the
p direction that the sum in Eq. (6) does not van-
ish when summed over direction. But this asym-
metry cannot affect appreciably the frequency
distribution. Assuming, therefore, that the di-
rectional distribution of the modes for a given
frequency is the same as for any other frequency,
which is certainly true for the Debye distribution,
we can replace the Pz' by their directional aver-
age P, '. The right-hand side of Eq. (6) thus be-
comes P&'C„where C, denotes the contribution
of all the longitudinal modes to the specific heat.
We proceed for the transverse waves similarly,
and also for the b, &&, and denote the directional
averages by P, ', b, &', and b„', respectively, and
the total specific heat of the transverse modes by
C, . For low temperatures Eq. (5) thus becomes

ature definitely found proportionality to T'. For
other materials there seems to be no clear ex-
perimental information on the temperature depen-
dence of II near T =0. Measurements by Lang'
on LiSO4 H, O extend down to 4.2'K, but while
above 30'K the coefficient is clearly not propor-
tional either to T' or to T, it is not clear from
the published data whether or not there is pro-
portionality to T' at the lowest temperatures.
This material, in common with most strongly
pyroelectric materials, has many atoms in its
unit cell; this may result in some of the optical
branches having very low frequencies, in which
case one would expect the T' behavior only at
very low temperatures.

In order to predict from Eq. (5) the tempera-
ture dependence of II, above the T' region, one
needs information on the various constants. We
note, however, that Eq. (7) is valid for long
acoustic waves and therefore for the Debye mod-
el it should be valid at all temperatures. Hence,
when the Debye approximation is valid, 0, is ap-
proximately proportional to the specific heat C„.
The same is true for II„as the T dependence of
II2 is determined by the thermal expansion which
for the Debye model is also proportional to C„.
Indeed, Heiland and Ibach' have found that II for
ZnO was proportional to C„over the entire range
of their measurements, which extended from 9'K
to well above room temperature.

But we cannot expect the Debye approximation
to hold generally, in particular for polyatomic
materials. Equation (5) shows that deviations
from the Debye model can affect II, much more
drastically than they affect C„. The Pzz and b,z&

may a Priori have either sign, and they may have
very different types of vibration, in particular
for materials with many atoms in the unit cell.
If this happens then the temperature dependence
can be rather complicated.
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