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stability can be stabilized by the applied magnetic
field only. Beam-transverse-temperature stabi-
lization, according to the Bennett pinch condition,
Eq. (12), does not occur because of a finite re-
sistivity in the background plasma. In present
experimental regimes, the mode is of the resis-
tive type.
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We have injected short bursts of aluminum into the adiabatic-toroidal-compressor
(ATC) tokamak, and measured the time evolution of the radial distribution of highly ion-
ized states of aluminum. The results are compared with a computer code describing
neoclassical impurity diffusion.

The transport of high-Z ions in tokamak plas-
mas is of crucial importance because impurity
profiles greatly affect radiation losses, ' reac-
tivity, ' and stability, ' as well as the efficacy of
the various heating schemes. ' Considerable ef-
forts have been made to measure intrinsic im-
purity content' ' and profiles. '' However, it is
difficult to determine transport coefficients from
these experiments because of the lack of knowl-
edge of the impurity source function. By employ-
ing a new impurity injection technique in con-
junction with vacuum ultraviolet (VUV) spectros-
copy, we have been able to measure the radial
transport of aluminum ions in a dirty (Z,f&

——4.6),"
quiescent (no large kinklike modes), tokamak
plasma. The measurements have been compared
with a computer code describing Pfirsch-Schluter
impurity diffusion" and agreement is found. We
consider this to be further evidence of the neo-
classical behavior of ions in tokamaks.

The details of the impurity injection technique
have been described elsewhere. ' High-power
laser irradiation of an aluminized glass slide

produces a 300-p, sec burst containing - 5 &&10"

neutral aluminum atoms with -3 eV mean energy.
These atoms are directed into the adiabatic-to-
roidal-compressor (ATC) tokamak, in which the
total number of electrons is approximately 10".
The injected aluminum atoms penetrate about 2

cm into the plasma before being ionized to AIII.
The ionization process continues as the ions rap-
idly circulate along the field lines and, less rap-
idly, move across them. The time evolution of
the line integral of the emissivity for different
aluminum ionization states is measured using an
absolutely calibrated, grazing-incidence VVV
monochromator (McPherson Model No. 247). Ob-
servations are made of the strong An=0 transi-
tions to the ground state (X =278.7, 309.6, 352.2,
388.0, 385.0, 332.8, and 550.01 A for Al V, VI,
VII, VIII, IX, X, and XI, respectively).

During these experiments magnetic probes
showed that no large magnetohydrodynamic kink-
like modes were present and that the up-down
and in-out stability was +1.0 cm. With use of a
4-mm microwave interferometer the average
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with the flux of the jth ionization state given by"
2ZPPb b bi(iyct 2) T b (2)
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FIG. 3. Absolute peak brightness of Al lines. (a) Ex-
perimental; (b) calculated.

where

v =4(2n)V2n Z 2Z 2e41M/3 v2Tb

n» m,» T» Z» and pt, are the density, re-
duced mass, temperature, charge state, and
Larmor radius of the background ions (b = oxygen
and hydrogen); n, is the density of the jth ioniza-
tion state of aluminum, e.g. , j = 5 for Al VI; and

S,. is the sum of source terms of the jth ioniza-
tion state. These include electron impact ioniza-
tion, "dielectronic, "and radiative" recombina-
tion. n, is a constant of order unity. "

We have calculated that diffusion caused by col-
lisions between different Al ionization states, as
well as temperature-gradient contributions, is
negligible. In the code we specify that there is
no recycling of Al lost at the edge. The different
ion species are assumed to have temperatures
equal to the proton temperature. The electron
and proton density profiles are assumed to be
stationary in time and to have equal logarithmic
spatial derivatives given by the measured elec-
tron profile. The absolute concentration of oxy-
gen is set so that Z,&&=4.6 on axis. The oxygen
ionization states are determined from the steady-

state corona model" in the region y = 0 to 14 cm.
Outside this volume the oxygen is assumed to be
ionized five times. The initial distribution of
Al II was calculated from the measured energy
distribution of the injected neutrals' and the mea-
sured electron temperature and density profiles
of ATC.

Both the spread of velocity and the drift dis-
tance of the injected aluminum from the slide to
the torus were taken into account in the comput-
er-code source function. However, the spread-
ing in time of the particles along the field lines
to the azimuthal position of the monochromator
was not included since the interval is smaller
than the experimental uncertainties.

The results of the code are in good agreement
with the experiment. The code does predict the
"stationary shell" effect. The inset in Fig. 1
shows the code predictions for the radial location
and the width of the radial distribution of Al IX,
X, and XI. Figures 2(b) and 3(b) show the pre-
dicted time evolution and absolute brightness"
for the observed line of each state. In all, only
the brightness of AlXI does not give good agree-
ment.

The uncertainties in comparing the code with
the experiment must be stressed. The diffusion-
al flux of aluminum due to collisions with oxygen
ions is comparable to that due to collisions with
the protons, and the oxygen profile is the least
accurately know quantity. However, if the oxy-
gen gradient is any steeper than we have assumed,
the diffusion must be slower than neoclassical.
We have also investigated the effects on the code
of varying the proton and electron temperatures.
Taking into account all the aforementioned uncer-
tainties and uncertainties in the source-term
rates, we infer that the diffusion coefficient is
eclual to the theoretical one [see Eq. (l)] with an
uncertainty of a factor of 3.

Groups at the OHMAK, "T-4,' and ATC" toka-
maks have investigated ion thermal conductivity
and found it to be neoclassical. Groups at the T-
37 and ATC' tokamaks have investigated impurity
transport and conclude that it is inward. The
present work also reports inward diffusion with
a transport coefficient close to neoclassical.
However, x-ray experiments on the ST" tokamak
have shown no peaking of the impurity profile on
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axis. %e stress that our transport studies were
performed in the region outside the g = 1 surface.
It is possible that transport inside this region is
turbulent and hence peaking of the impurity pro-
file is avoided.
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