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culation: V. Heine, Phys. Rev. 138, A1689 (1965); and
in much more detail by J. A. Appelbaum and D. R. Ha-
mann, in Physics of Semiconductors, edited by M. Pil-
kuhn (Teubner, Stuttgart, Germany, 1974), p. 681. Al-
though the qualitative concept of metal-induced surface
states agrees with experiment, the predicted barrier
height of the latter calculations is in error by a large
amount, 0.6—0.7 eV. This is probably due to their as-
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A scaling argument is used to demonstrate the existence of a minimum metallic conduc-
tivity with a universal value for two-dimensional random lattices. We present a summa-
ry of the results of a detailed numerical experiment which supports this suggestion and
indicates that the minimum metallic conductivity is (0.12+0,03)e?/7, in fair agreement
with some experimental results for inversion layers.

A description of the electronic properties of
disordered systems requires a firm basis for
characterizing the pure homogeneous disordered
state. This characterization has been hampered
on the one hand by calculations which are not eas-
ily related to experimentally measurable quanti-
ties, and on the other hand by experiments in
which sample preparation too often plays a deter-
mining role. This has meant that it is not easy
to distinguish one theoretical system from anoth-
er by the accuracy of its predictions, nor to tell
which approximations provide helpful simplifica-
tion and which produce misleading results.

Mott! argued some time ago for the existence
of a minimum metallic conductivity in disordered
systems, but his analysis has been subject to con-
troversy.? In this note we suggest that for two-
dimensional systems definite predictions can be
made about this quantity, which has been mea-
sured, for example, in silicon inversion layers.
In particular we present arguments not only for
its existence, but to show that, for noninteract-
ing electrons in a static two-dimensional random
potential, the minimum metallic conductivity
should have a universal numerical value, and we
find that value to be about 0.12¢2/%. This should
serve as a standard of comparison for theories
which take into account further aspects of physics
such as many-body effects.

Our analysis consists of two parts. We first

construct a scaling argument, a rather crude ver-
sion of those used in the theory of critical phe-
nomena?®; the steps in this argument were almost
all in the paper of Edwards and Thouless,* but
their significance was not understood. This scal-
ing argument shows that the minimum metallic
conductivity has a universal value independent of
the details of the two-dimensional disordered
system. This being accepted, it is possible to
calculate its value using any convenient system,
and the tight-binding model with random site en-
ergies seems the most suitable for calculations.
We have numerically sampled small replicas of
tight-binding systems, varying the size of the
system to detect the positions of the mobility
edges, and varying the lattice structure and de-
gree of disorder to check the universality hypoth-
esis. In this note we give only a brief summary
of the results of these extensive calculations,
which are reported in full elsewhere.® Before
presenting our arguments we observe that the
Toffe-Regel condition,® the importance of which
Mott” has repeatedly emphasized, leads to a two-
dimensional minimum conductivity in fair agree-
ment with what we obtain. According to simple
kinetic theory the conductivity of a two-dimen-
sional electron gas is given by

0=2ne?r/m=(e?/h)kp)/2m,

where 7kp2/(27)2 is the number of electrons n with
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a particular spin per unit area, 7 is the relaxa-
tion time, A the mean free path, and kr the wave
number of electrons on the Fermi surface, The
Ioffe-Regel condition says that kg cannot be sig-
nificantly less than unity, and if we take kpr =1 as
the minimum value we obtain a minimum conduc-
tivity of 0.16e2/%. In three dimensions, however,
the same argument leads to an extra factor of &y,
and so the conductivity depends on the length
scale of the system.

We present the scaling argument for the tight-
binding model on a square lattice. We start off
with a set of atomic sites, each with a random
energy €, uniformly distributed in the range — ;W
to W coupled to its nearest neighbors by a con-
stant matrix element — V. We consider a square
of side L containing N of these sites, and consid-
er the energy levels of this square with suitable
boundary conditions. If we take the periodic con-
tinuation of this square, that is, the periodic sys-
tem whose unit cell is this L XL square, then
each level of the square will broaden into a band
of width 2AE, where AE is the shift of energy
produced by a change from periodic to antiperiod-
ic boundary conditions along one cell edge. The
next stage in the scaling argument involves the
consideration of a square array of N of these L
XL squares, with a different set of site energies
in each. This is similar to the original tight-
binding model, with each L XL square equivalent
to a site. The coupling between levels in differ-
ent squares is of order V,’=%+AE since this is
the coupling between identical levels that would
produce a band of width 2AF in the case of peri-
odic continuation. The spacing between energy
levels on neighboring squares should be of order
L~*an/dE)"!, where dn/dE is the density of
states per unit area; it would be within the spirit
of a scaling theory to ignore those levels which
lie outside the range of a few times V,’ around a
particular energy, and to identify this spacing as
W', the energy spread in the rescaled problem.
We ignore all other parameters that may be rele-
vant and so we have replaced the tight-binding
problem which was characterized by the ratio
V/W by a rescaled problem in which the ratio
Vy'/Wy' plays a similar role, namely the strength
of the coupling between the closest energy levels
on a pair of neighboring squares divided by a
width characterizing their random mismatch,

We continue this process by calculating V2’ and
Wy2'=N"1L"%(dn/dE) "! for a square containing N2
atoms. The calculation can be repeated for N3
atoms and so on, and at each stage the quantity
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V'/W' is evaluated. If the states of energy E are
localized V’/W’ will decrease with each iteration
since the coupling V,’ will decrease as exp(- N/?),
Furthermore, since we suppose a priori the exis-
tence of a localization edge at E for some (V/W),
there should be a maximum value (V’/W’),y, for
which this exponential decrease occurs.

In previous work*®? the bandwidth for the per-
iodically continued system has been related to #
divided by the time it takes for an electron to dif-
fuse across the unit cell. Specifically, from Eqgs.
(3.12) and (3.14) of Ref. 9, the curvature of a
band generated from a particular level is statis-
tically distributed with a distribution whose mean
is zero and whose geometric mean is 2ZD(E),
where D(E) is the diffusion constant. If we as-
sume, as is implicit in our analysis in the previ-
ous paragraph, that these bands are of the tight-
binding form 2(;AE,) cos(K, L) + 2(3AE,) cos(K, L),
where AE, and AE, each have geometric mean
AE, then comparison of the curvature of the tight-
binding band with the relation to the diffusion con-
stant shows that AE is equal to 45D(E)/L2. This
formula should be valid when the states are ex-
tended and the mean free path is much less than
L. Combining V,’=1AE with the relation between
Wy’ and the density of states dn/dE, one finds
that V'/W,’ is simply #D(E)dn/dE. The rela-
tion between the diffusion constant and the con-
ductivity o of a degenerate electron gas shows
that V,’/Wy’ for large N is equal to o%/2e2,

It is clear now from the argument that if V//W’
is less than its critical value the electrons must
be localized, and this therefore implies the exis-
tence of a nonzero minimum conductivity given
by 0,,=2(e*/B)(Vy' /Wy )ar. Furthermore when
the electrons are extended and a diffusion con-
stant exists V,’/W,’ should scale to a constant
value independent of N, and it is this constant
value that is related to the conductivity.

In three dimensions V' should scale like N ~2/3
and W,’ like N7!, so that V,’/W,' should increase
as N'/® in the region of extended states. Thus,
although we would also argue in this case that
states will be localized if V,'/W,’ is less than
some critical value, the conductivity is given by
N™Y3yy'/Wy', and cannot be directly related to

this critical value. The minimum metallic con-
ductivity in three dimensions must, as is well

known, depend on some length scale of the sys-
tem.

As long as we assume that the only 7elevant pa-
rameter (in the critical-phenomena sense) is Vy'/
Wy’ there should be no dependence on either the
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FIG. 1. Results of numerical calculations for square
lattices with W/V =5.0. In each energy range of magni-
tude 0.5V the values of Np(E)AE (which should be pro-
portional to conductivity for extended states) are shown
for N=36, 64, 100, 144, and 196.

lattice structure or the nature of the disorder
since the fixed point for our scaling parameter in
the region of localized states is zero. No refer-
ence is made to the nature of the lattice or the
type of disorder when we go from V,'/W,’ to
Vy2'/Wy2'. This implies a common (V’/W’)y for
all two-dimensional systems which may be de-
scribed by a random single-particle field. Since
it is the rescaled V,'/W,’ in the limit of large N
that gives the conductivity, the minimum value
does not depend on the nature of the system.

To test this conclusion and to establish the val-
ue of the minimum metallic conductivity we have
made extensive calculations for machine-gener-
ated samples of tight-binding lattices with random
site energies. These calculations are reported
in detail elsewhere,® but because of their rele-
vance to the scaling argument we give a brief ac-
count of them here. The method of calculation
was similar to that used in Ref. 4, in that the en-
ergy shift AE produced by a change in boundary
conditions was calculated for lattices with 36, 64,
100, 144, and 196 sites. For the smaller lattices
100 samples were used, and for the largest one
at least 15 samples. The value of NAEp(E) was
found in each energy interval as a function of the
number of sites N; AE is the geometric mean of
the energy shift in the interval and p(E) is the
density of states per site. We have already ar-
gued that this quantity should be related to the
conductivity by

NAEp(E) =20k /e?

for extended states. Intervals outside the mobili-
ty edge were identified by the steady decrease of
this quantity (which is essentially V,'/W,’) with
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FIG. 2. The minimum metallic conductivity corre-
sponding to each mobility edge E , for the honeycomb,
square, and triangular lattices (indicated by the appro-
priate symbol) for various values of W/V. The error
bars indicate the spread in results as N is varied over
the values 64, 100, 144, and 196.

N, while in the region of extended states there is
a more or less random variation with N. Figure
1 shows a typical graph of the results for a square
lattice with W/V =5, In each energy interval the
value of NAEp(E) is shown for the five lattice
sizes, with N =36 on the left-hand side and N
=196 on the right-hand side of the interval. The
two sides of the symmetrical band are lumped
together, and the mobility edge can be deduced
from the value of NAEp(E) in this energy range.
The calculations were performed for the honey-
comb lattice (Z =3), the square lattice (Z=4),
and the triangular lattice (Z = 6) for several val-
ues of W/V, The results are shown in Fig. 2,
with the conductivity at the edge plotted as a func-
tion of the position of the edge for the three types
of lattice. Although there is some scatter in the
results, we believe that they support the sugges-
tion that the minimum metallic conductivity should
have a constant value. From these results we de-
duce that the two-dimensional minimum metallic
conductivity has the value (0.12+0.03)e?/#, or
about 3.0 X107° mho. This is a little higher than
the value measured by Pepper, Pollitt, Adkins,
and Oakley' for the minimum metallic conductiv-
ity in a metal-nitride-oxide-semiconductor field-
effect transistor, but is not inconsistent with
their results. It is quite incompatible with the
results reported by Tsui and Allen!! and their re-
sults may suggest the importance of many-body
effects in such systems.
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helpful comments on the manuscript.
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COMMENTS
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Excitation functions have been measured for the a-particle, proton, and elastic chan-
nels of the reaction >C +'3C at several angles in the energy range E1,p=16—28 MeV. Ob-
served structures cannot be due to molecular-type doorway states as is the case for the
sub-Coulomb resonances of the reaction '*C +*C.

Recently Crozier and Legg' have measured ex-
citation functions for the a-particle and elastic
channels of the reaction '*C +'*C at energies
around and above the Coulomb barrier. Observed
structures have been interpreted to be due to the
existence of molecular-type doorway states as is
the case in the reaction '*C +'2C at sub-Coulomb
energies.”? The signature of those doorway states
is correlations among excitation functions mea-
sured for different reaction channels and differ-
ent angles. In the reaction '2C +*2C these corre-
lations have been seen very clearly.?® In the
reaction *C +'3C they are not very striking,! in
particular since structures in the elastic chan-
nel often are due to nuclear and Coulomb inter-
ference effects at these low energies.

In order to see if distinct correlations do ex-
ist in the excitation functions of the reaction *C
+C we have measured excitation functions for
the a-particle, proton, and elastic channels at
several angles in the energy range E, =16-28
MeV. This energy range is just above the ener-
gy range for which smooth excitation functions
have been found by Voit ef al.* and by Halbert
and Nagatani®; it includes those energies for
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which structures are reported in Ref. 1. The
measurements have been performed at the Er-
langen EN tandem accelerator. Alpha-particle
and proton excitation functions have been mea-
sured simultaneously by use of a multidetector
array. They are displayed in Fig. 1. We have
summed over the first thirteen and the first 29
states in the respective residual nuclei. The ex-
citation functions for the elastic channel have
been measured simultaneously with the a-parti-
cle excitation function at 6,,,=13°. The curves
are shown in Fig. 2.

The a-particle curve measured at 9,,,=10° ex-

. hibits indeed pronounced structures (see Fig. 1).

It agrees quite well with the a-particle function
of Ref. 1. The remaining a-particle curves are,
however, rather smooth. An increasing smooth-
ness is very evident with increasing scattering
angle. Among the proton curves only the one
measured at the most backward angle shows
some structure. The elastic curves in Fig. 2
are structureless at least in the energy range
where structure is reported in Ref. 1.

The lack of any correlated structure in our da-
ta (the a-particle curves for 6,,,=10° and 13° are



