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We perform a microscopic calculation of the memory function of the velocity autocorre-
lation function in a classical one-component plasma. Our theory yields oscillatory be-
havior in the velocity autocorrelation function consistent with recent molecular-dynamics
coxnputations. We also calculate the self-diffusion coefficient as a function of density.

Recently Hansen, Pollock, and McDonald' '
have reported molecular-dynamics (MD) compu-
tations of the velocity autocorrelation function

Vo(t) and its memory function M(t) for the clas-
sical one-component plasma in a uniform back-
ground of opposite charge. The most striking
feature of their computations was a coupling of
the single-particle motion to the collective den-
sity fluctuations. This coupling was manifested
in the appearance at high densities and at long
times of oscillations in VD(t) and M(t) at a fre-
quency near the plasma frequency &u~= (4mn e/

m)' '. We present here a simple microscopic
theory which gives the oscillatory feature of
Vo(t) as a function of the dimensionless parame-
ter' F =e'/aksT with a= (3/4mn)'I' We c.alculate,
as functions of F, M(t) and the time integral of
M(t) which is related to the self-diffusion con-
stant D, and we find qualitative agreement with
the MD computations.

The microscopic theory is based on the kinetic
.theory formalism presented by Mazenko' ' (whose
notation we adopt) and leads to a kinetic equation
that includes the exact statics of the system,
treats screening at large and small distances
consistently, and is valid for all wave vectors k

and frequencies co. In the limit of small k and w

and I"«1 the kinetic equation reduces to the Le-
nard-Balescu-Guernsey (LBG) equation. ' Our ki-

C, (12, t) = (5f,(2)e+'~' 5f,(l)) . (2)

5f, (1) is the deviation of the phase-space density
for a tagged particle,

f,(1)= WiV5 (1 —q, ),
from its equilibrium value and q, = (r„P,) are the
phase-space coordinates of particle 1. We de-
note the Liouville operator by L and the average
over an equilibrium ensemble by (). We work
mostly with the temporal Laplace and spatial
Fourier transform C, (k, p,p„z). We also require
the time-dependent phase-space density correla-
tion function C(12; t) defined as in (2) with f,(1)
replaced by

The memory function cp, is introduced as the ker-
nel in the kinetic equation for C„

netic equation is free of the short-range diver-
gence due to close collisions associated with the
LBG equation.

The velocity autocorrelation function is defined
as

v, (t) =-,'&v, (t) v, (o)),

and can be obtained from' the time-dependent
phase-space correlation function for self-diffu-
sion,

' C. (k, p,p., s)- f d'p ~.(k, p,p, ~)C, (k, pp. , ~)=C, (k, p, p.),(
k p, (4)

where C, (k, p, p, ) = C, (k, p, p„ t =0). The calculation of q, is the major problem in developing a micro-
scopic theory. We use the analysis of Ref. 6 to write cp, in the exact form [see Eqs. (5.8) and (5.15) of
Ref. 6]

cp, (12)nfo(p, ) = —f dl d2 d3 d4 'U, (1; 13)G,(13; 24)V, (2; 24) . (5)
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The renormalized interaction 'U, is determined by the two-particle statics, G, is a phase-space corre-
lation function that describes the dynamical evolution of two particles in the medium, and f,(p) is the
r enor malized Maxwellian distribution.

We assume that the dominant physical processes contributing to G, are the collective effects asso-
ciated with the long-range nature of the Coulomb potential and retain those events in which two parti-
cles initially interact, propagate independently of each other but interact with the medium, and even-
tually recollide. The correlations that lead to the recollision are "communicated" by the medium,
and hence the process is associated with collective effects. We thus approximate G, by its disconnect-
ed part

GD(ll. '; 22'; t) =f dl d2d3 d4C, '(11)C (22)C, '(1'4)C '(2'3)C, (14; t)C(23; t). (6)

The "disconnected" approximation (6) ignores the effects of close collisions and can be expected to
break down for very short times. This approximation can be made part of a systematic analysis in
which the remaining contributions to cp can be explicitly calculated. We will discuss the contribution
of close collisions in future work. It is straightforward to show that if we substitute (6) into (5), we

find

p, (&,p,p„t) f,(p, ) = —f d'q(2v) '[ p 'C (q)]'q V p V, C, (k-q, p,p„ t)S„„(q,t),
where

S„„(q,t) =f d'p, d'p, C(q, p, p„ t)

(7)

(8)

is the usual time-dependent density-density correlation function and CD(q) is the direct correlation
function.

Given (7) and (4) we must solve a nonlinear integral equation in the momentum variables. To avoid
this technical difficulty, which can be treated by use of the method of kinetic modeling, we present an
approximate solution which gives the quantitative long-time behavior and the qualitative short-time
behavior. We assume that the correct long-time behavior is dominated by the single hydrodynamic
mode associated with number conservation:

C, (k, P,P„t)= fo( P, ) f(OP, ) $, (k, t).
Equation (9) leads directly to the memory function

M(t) =[3(m V ) n] f d q (2m) q [46 'C (q)J S,(q, t)S„„(q,t), (10)

where S,(q, t) is defined as in (8) with C replaced
by C„and &,'=(Pm) '. The approximate solu-
tion (10) for M(t) is equivalent to the first Sonine-
polynomial approximation used in treating the
Boltzmann equation.

In principle we should use the self-consistent
solution of (4) and (7) for S, and the solution of a
similar set of equations for S„„in (10) to deter-
mine M(t). In lieu of such a sophisticated ap-
proach we start with the simplest possible forms
for S, and S„„and identify those features of S,
and S„„that make significant contributions to
M(t) and D. We calculate M(t) by approximating
S, and S„„in (10) in three ways: (a) by their free-
particle forms, (b) by mean-field theory, and

(c) by using forms which interpolate between the
exact short-time and long-time hydrodynamic
behavior.

(a) The free-particle forms for S, and S„„yield
results for D which are off by two orders of mag-
nitude from the MD calculations.

(b) In the mean-field approximation we neglect

$ (q t) — gf dye-let ~(q)Q(q ~)
e(q, z)

where

~(q, z) =(I+[s(q) —1]~Q(q, ~))/$(q),

Q(q ~)=f d'pf (p)(~-i p/m) '.
(13)

(14)

The substitution of (ll) and (12) in (10) yields a
nontrivial form M, (t) which reduces to the LBG
form in the appropriate limits. We choose Mo(t)
as our zeroth-order approximation from which

the collisional parts of the kinetic equations for
C and C, and retain only the static contribution
to y. (The static contribution to q, vanishes
identically. ) These approximations for C, and C
can be solved exactly to give the free-particle
form

S,(q, t) = n exp(- q 'V, 't'/2)

and the "self-consistent-field" result
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we calculate D,. We use the MD computation' of
S(q), the static structure function, as input and
perform the integrals numerically. The results
are given in terms of the dimensionless quantity
D*=D/u&~a' and are listed in Table I. The cal-
culated D,* exhibits a rapid variation in I con-
sistent with the MD calculations'; for I'=4 and
20, D,*/D~D*-1.5, and for I'=110.45, D,*/D~D*
-1.8. A simple calculation of D* for I'&1, for
which the contribution of close collisions is neg-
ligible, shows that the use of (9) causes D,* to
be too large by a factor of approximately 1.5.
Hence, the additional discrepancy between D,~

and D»* for l" = 110.45 is due to the use of the
disconnected approximation. The significant dif-
ference between the free-particle approximation
for S„„and (12) is that for small q Eq. (12) is
proportional to a factor cos(u&~t) whose oscilla-
tions lead to large cancelations in the integral
over M(t) and cause the large quantitative differ-
ence in the calculated values of D.

(c) Although M, is a useful approximation and

gives reasonable values for D it does not give
the long-time behavior of M(t) accurately. This
is because the mean-field approximations for 8,
and S„„neglect the hydrodynamical modes that
dominate the long-time behavior of M(t). The in-
terpolation forms' mentioned above are

S,(q, t) =nexp[- q'W, (t)/2],

For q& q, we choose

s„„(q,t)

= ns(q) cos((u, t) exp[- q' Wr (t)/2], (17)

where ~,'= ~~'q'/4mne'S(q)p and Wr (&) is de-
fined as in (16) except that D is repfaced by the
sound attenuation coefficient" I'„„. For q& q,
S„„(q,t) is given by (12). The value of qo is de-
termined by the criterion S(q,) =0.1 which implies
that q, is an increasing function of I'. Equations

(15)-(17)require D and F„„asfunctions of I'.
Since our calculated D, is off by an overall fac-
tor, we have substituted the MD values of D in
(16). Also since we have not calculated I „„, we
use the values determined from a generalized
hydrodynamic calculation. "

The interpolation formula for M(t) is evaluated
numerically and compared to the MD data for
M(t) in Fig. 1. It is seen that the calculated M(t)
is in qualitative agreement with MMn(t). In the
long-time limit the dominant contribution to the
integral in (10) arises from small q for which

S(q) and C~(q) are given exactly by their Debye-
Hiickel forms, ' and the dynamics is given exactly
by hydrodynamics. We thus obtain the asymptot-
ic behavior of M(t),

2 2

3am(D+I' /2
(18)

033 i

033% 1

I

Equation (18) depends" only on (6)"and (9). We
see that for long times the motion of single par-
ticles is coupled to the wavelength density fluc-
tuations and leads to a long-time tail which os-
cillates about zero with a frequency ~~ in quali-
tative agreement with the MD calculation of V~(t)
and the "exact" M(t). Since we have not calculat-
ed I „„we have not used the interpolation form
for M(t) to obtain the correction to D,* which
arises from the inclusion of the hydrodynamic
modes.

Our results indicate that the disconnected ap-
proximation (6) gives a good description of the
long-time and intermediate-time behavior of the

TABLE I. Comparison of molecular-dynamics and
microscopic calculations of the dimensionless diffusion
constant &* as a function of I'.

4
20

110.45

0.46
0.060
0.0051

0.69
0.092
0.0090

FIG. 1. Comparison of memory function obtained from
molecular dynamics (dashed line) (Ref. 2) and from mi-
croscopic theory (solid line) for j.=20 and 110.4. The
time scale is in units of & and &~(t) is in units of p
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velocity autocorrelation function of a dense one-
component classical plasma.
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We report measurements on the spin resonances in u-Tbpe2 and a-Gdpe&. A preliminary
interpretation in terms of an oversimplified model involving clusters in a disordered ma-
terial is also outlined.

Amorphous ferromagnetism has attracted con-
siderable attention in recent years. For instance,
a- TbFe2 and a-GdFe, have been studied in great
detail by Rhyne and co-workers using both neu-
tron scattering' and static measurements. ' Re-
cently, Rhyne made available to us a few spec-
imens of these materials. We have studied the
spin resonances in a-TbFe2 at several micro-
wave frequencies between 9 and 31 GHz and at
several temperatures between 77 and about 450
K. In a-GdFe, measurements have been made at
several frequencies and 77 &T& 300 K. The re-
sults are very anomalous and at present we can
offer only rather rough explanations for some of
the observations. The experiments were per-
formed in conventional microwave spectrometers
using setups described in earlier papers from
this laboratory. ' The samples were of milli-
meter size, chips or needles spark-cut from
larger boules. However, one of the a- TbFe, sam-
ples was a sphere of diameter -1 mm and one of
the a-GdFe, specimens was a large parallele-
piped (5x 3.5x I mm'). The sample temperature
was monitored by use of a copper-Constantan

thermocouple affixed to the outside of the cavi-
ty. In a separate series of experiments using
two thermocouples (one replacing the sample) we
have checked that the sample temperature is with-
in a degree of the thermocouple temperature.

Figure 1 is a typical recorder trace of the field
derivative of the power absorption in a-TbFe, at
10.8 0Hz and 300 K. Such a spectrum, i.e. , one
strong line (S,) and three weak satellites (S,
through S4) on its high-field side, is essentially
characteristic of all the samples studied. By
repeated measurements the center of S4 (i.e. ,
H4) was determined to about 100 Oe. H4 varies
roughly linearly with frequency (Fig. 2). How-
ever, it is surprising that it is essentially inde
pendent of sample shape On the othe.r hand the
value of H, reflected the changes in the static
demagnetizing field due to changes of size and
shape. S, being very weak and lying rather close
to S„ its position (H, ) cannot be fixed without con-
siderable analysis involving assumptions as to
line shape, etc. However, in every case B,)H, .
At present, we have only rough measurements on
8,. Further, it should be noted that the intensity
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