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We consider phase transitions in systems where the field conjugate to the order parame-
ter is static and random. It is demonstrated that when the order parameter has a continu-
ous symmetry, the ordered state is unstable against an arbitrarily weak random field in
less than four dimensions. The borderline dimensionality above which mean-field-theory
results hold is six.

In view of the recent developments in the theo-
ry of critical phenomena in ideal systems, ' the
questions of the influence of random impurities,
disorder, etc. , on the phase transitions become
relevant. Since these nonideal effects exist in
any real system, understanding them is essential
for any meaningful comparison of theory and ex-
periment. The case where the coupling constants
which are responsible for the transition are ran-
dom has recently attracted considerable atten-
tion. ' Here we would like to discuss the case
where the field conjugate to the order parameter
is random, and we shall consider only the static
(or "quenched") situation. A particular case of
this model, the ideal Bose gas, was recently con-
sidered by Lacour-Gayet and Toulouse' who found
that space dimensionalities of four and six played
special roles and that some of the usual scaling
laws are not obeyed in this inhomogeneous sys-
tem. It is easily seen that the borderline dimen-
sionality above which the mean-field or Gaussian
results hold is six. We shall give arguments
demonstrating that, for n) 2 (in the isotropic

case where the order parameter has a continuous
symmetry), the ordered state of a very large
system is unstable against an arbitrarily small
random field. We shall see this in two ways: by
considering the energetics of domain formation
following the fluctuations in the random field, and
by using the diverging susceptibility of the or-
dered state for n~ 2. It should be possible to for-
mulate a more rigorous proof4 of our statement,
but we believe that our qualitative arguments
bring out the essential physics of the problem.

There are a number of situations where quenched
random fields appear to be physically realizable.
In Ref. 3, random sources and sinks of superfluid
particles (e.g. , Josephson junctions connecting
the system to other systems) and stray magnetic
fields were suggested. The latter may also be
due to local magnetic moments. A case of par-
ticular interest would be displacive transitions
or the various kinds of electronic instabilities
leading to lattice distortions' where defects, im-
purities, and dislocations may couple to the or-
der parameter. The continuous order-parameter
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symmetry can be obtained in this case if the lat-
tice distortion is incommensurate with the origi-
nal lattice. Another interesting case may be a
classical ferromagnet with antiferromagnetic
site impurities, where a redefinition of the im-
purity spins can make their coupling with the
host ferromagnetic. However, a finite applied
magnetic field will have a reversed sign on the
impurity spins, thus leading to a random compo-
nent of the field. One may also visualize impuri-
ties which may influence the local orientation in
a liquid crystal to yield a random field, as in our
model.

We consider the usual isotropic n-component
model' for phase transitions with an order param-
eter o'(x) coupled to a random field h(x),

by the new term 4X in the Hamiltonian. The in-
tegration is in the d-dimensional coordinate space
and the scalar product is in the order-parameter
space. h(x) is a random function which we shall
assume to have a zero mean and short-range
spatial correlations f,

(h(x)h(x')) = f"(x -x'); (ll h„) = 5„„.f (k), (2)

where f (k) = J d"x f (x) and h» = V '"f d x h(x)e'"'".
Dne may visualize the field h(x) as being gener-
ated by random frozen centers.

Suppose one has two neighboring domains of
linear sizes -I measured in lattice-constant
units. The domain wall energy is -L" ' for the
Ising case and -L ' for the continuous-symme-
try case. ' (In the latter case, the domain wall
energy is optimized by a continuous rotation of
the order parameter over a distance comparable
to L )This ar. gument immediately shows' that
for d &2 there will always exist large enough val-
ues of I (for a large system) for which the wall
energy will be low enough so that it will pay for
the ordered system to break into domains of size
L, . This is the well-known" lack of long-range
order in continuous-symmetry systems for d & 2.
In the case where the random field (1) exists, the
situation becomes more interesting, as can be
easily seen by employing a scaling-type argu-
ment due to Brooks Harris' in the random-ex-
change problem. Although (h) = 0, the value of h

summed over all spins in a size I will fluctuate
from one domain to another with typical values
being given by (&h') -L . Thus, by splitting into
domains of size I, the system will gain bulk en-
ergies of O(L ")per domain, and lose a "sur-
face" energy of O(I ') per domain (for n~ 2).

m, =G~(k)h» +O(h'), (4)

where G~(k) is the transverse susceptibility for
the pure system, which, for k-0, behaves as'

G (k)-(ck'+Il/m) ', (5)

where c is a constant and II is the uniform applied
field, which we assume to vanish. The correla-
tion function of the transverse magnetization is
then

(m'(x) m'(x ))

= (2m) "Jd~kG (k)'(~h ~t')e"''t" "'l

which diverges for d ~4, in view of (5), for II-0
and (~h» ~')40. Since m (x) is never infinite, we
have a contradiction. The conclusion is then that
m must vanish for d &4. This argument does not
constitute a rigorous proof, because only the lin-
ear part of G~(tI) is used. Since the divergence
is obtained because of the large number of terms
and not because of a simple diverging suscepti-
bility, this may not be a serious drawback. The
conclusion is the same as the one obtained from
the domain-mall argument, which should not be
sensitive to nonlinear effects.

For d &4, it is possible to have an ordinary
critical point, provided that the random field is
sufficiently weak. (Obviously, if the random

Thus, whenever

d/2~ d-2 or d ~4,
there will exist a large enough I, , for an arbi-
trarily small random field, where it will become
energetically favorable to the system to break in-
to domains of that size. For n= 1, the limiting
dimensionality becomes d ~2. It is also straight-
forward to generalize the argument to the case
where the random field has long-range spatial
correlations.

We note that, for d &4, the destruction of long-
range order will occur also in the ground state.
Since the entropy factor always favors the crea-
tion of domains, or, for that matter, any type of
disorder, it is clear that once a domain forma-
tion is energetically favorable it will have to hap-
pen even more extensively at finite temperature,
a,ssuming thermodynamic equilibrium.

One can arrive at the above result by examin-
ing the fluctuations that would follow if m = 7 '
&& f d x o (x) 4 0. Suppose that m 4 0 and that h(x) is
very weak. For n ~ 2, the components of h(x)
perpendicular to m will produce a ma, gnetization
whose Fourier components are, for a given h,
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field is stronger than the field effected by the
neighboring spins, then the spin will follow the
random field and no long-range order is possible
at any temperature. ) One easily verifies, using
the renormalization-group technique, ' that for d
)6 the critical exponents are those of the Gaus-
sian fixed point. For d = 6 —& and 4 & d & 6, one
finds

1 Pl +2—=2- e+O(s')=d —4+O(n '),
v n+8

We have demonstrated the instability of the or-
dered state to domain formation for continuous-
symmetry systems below four dimensions. This
agrees with the (n-~) results of Ref. 3, at con-
stant volume. It is probable that our results will
be immediately relevant to defect influence on
displacive transitions driven by electronic insta-
bilities, ' in the incommsurate case. In fact, this
type of mechanism was proposed by Sham and
Patton' to explain the lack of complete long-range
ordering in K,Pt(CN), Br, , 3H,O' at low temper-
atures. Our results support their suggestion, al-
though other explanations based on random inter-
actions" are also possible. In the magnetic case,
it would be interesting to consider random anisot-
ropy fields along the same lines as in this work.

One should emphasize that our conclusion is
not the obvious one that a strong random field
will force the local "magnetization" to point par-
allel to the local field. Our considerations dem-
onstrate the more subtle point that even when the
local random field is much weaker than the inter-
actions which favor the ordered state, there will
exist a large enough I where it will pay for the
system to break up into domains of size L. I is
determined by an interplay of the domain wall en-
ergy and the statistics of the random field.
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