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A chemical-bond theory of the magnetic susceptibility of tetrahedral semiconductors is
presented. Starting from a Hall-Weaire-type Hamiltonian, we derive an expression for the
susceptibility, whose diamagnetic and paramagnetic contributions are written in terms of
gauge-invariant physical quantities. Our analysis confirms a recently postulated model for
the susceptibility. Theory and experiment are in good agreement.

In a recent Letter, ' Hudgens, Kastner, and
Fritzsche (HK'F) proposed a model susceptibility
function for tetrahedral semiconductors of the
form

2 lml2
X= '2 [ Q (r')+ g(r')]+

COre V

They ascribed the first two diamagnetic terms in
this formula, denoted by y, and X„, to core and
valence electrons, respectively; the last term
()(~) is a Van Vleck paramagnetic susceptibility
arising from virtual interband transitions. HKF
also measured the susceptibility, and its temper-
ature dependence, for diamond, Si, Ge, GaAs,
and GaP. From these data, they could then sepa
~ately determine X„and X~. They find nearly com-
plete cancelation between y„and X~, a constant
interband matrix element (IMI') despite wide var-
iations in E, and values of (r')„,'" that scale
with lattice spacing. These results support their
model, but leave several questions unanswered.
In particular, the meaning of the various terms
((r')»&, IM I', etc. ) appearing in Etl. (1) remains
unclear. It is not obvious, moreover, that such
quantities are gauge invariant. The purpose of

this Letter is to sketch a derivation of the HKF
model. which resolves these difficulties. %e will
show that Eq. (1) follows from a simple tight-
binding picture, and we will present explicit ex-
pressions for the various terms in this formula,
which do not depend on the choice of origin of the
vector potential. The values of (r'),» and IMI'

cal.culated from these expressions agree with
those measured by HKF. These quantities have a
chemical significance, and can be used (as HKF
suggest) to characterize bonding in tetrahedral
semiconductors. In this sense, the theory de-
veloped here is similar to recently proposed di-
electric theories of chemical bonding. ' On the
other hand, our work is complementary to that
of previous authors, 4 who have derived exact,
but complicated, expressions for the magnetic
susceptibility of crystals.

The Hall-Weaire (HW) model" is the starting
point for our description of the. magnetic proper-
ties of tetrahedrally bonded solids. This model
has often been used to discuss the electronic
structure of diamond-type semiconductors' '. It
is also the basis for one of the dielectric theories
of bonding mentioned above. ' To incorporate the
effects of a magnetic field into the HW model, we
introduce a basis set of gauge-invariant, sp',
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atomic orbitals of the form'

}),.(p —}},.}=Iexp r (}}xR,. ) Ip,.(r —}},.). (2)

Here p~(r —R.) is one of four ( j'=1 to 4) sp' atom-
5

ic orbitals centered at site B, Matrix elements
are evaluated in the $,.(r —R,.) representation, as
discussed by Pople. ' The results are best sum-
marized by a tabulation of the magnetic field-in-
duced modifications of the HW matrix elements.
With reasonable approximations, ' we find

E E + (e B /Smc')(r '( j))&„,& =E,(j)-,

V, -e'"('' )[V, + (e'B'/Smc')(r~'(j))„„„p]-=V,(i, i', j),
V, -JV, +(Siee/Smc)[B. (~, x~, .)]]=V,(j, j'),

(3a)

(3b)

(Se}

where

B'(r '( j)),« „=Jy,. *(r)(r x B)'y,(r ) d'r,

B'(r,'(j)&.„„,p= Jq,. +(r -R,.)([r - 2(R,. +R, ,)]xB]'q (r R.,)d r
}((i,i') = (e/2')B (R,. x R, ,),

(4a)

. (4b)

(4e)

E, is the average energy of the sP orbitals, V, and V, are the matrix elements defined by Weaire and
Thorpe, ' and i, is a unit vector in the direction of the jth sp' orbital.

In the basis of gauge-invariant orbitals, the Hamiltonian takes the form

H={QE,(j)!ij)(ij!+Q [V (i, i',j )!ij )(i'j I+c.e.]]+( E [V,(j,j')!ij)(ij'!+c.c.]j=—(H, +H, ).
Jf 5l 5 0 el Se ge j

(5)

Equation (5) is our starting point for calculation
of the susceptibility. The complete problem is a
difficult one, 4 so we use a perturbative approach
leading to a power-series expansion of the sus-
ceptibility in the parameter V, /V, . This series
converges rapidly, since V, /V, & 0.5 is required
to insure that the HW model represents an insula-
tor. ' We first diagonalize II,. The resulting
eigenfunctions are bonding and antibonding com-
binations of the states g,.(r -R,.}and (,(r -R,'}.
These states may be used as a basis set for the
operator a„.

H, =(H„+H..}+(H.,+H,.),
where (H»+ H„) is that portion of H, which coup-
les bonding orbitals to bonding orbitals or anti-
bonding orbitals to antibonding orbitals, whereas
(H„+H„) mixes bonding and antibonding states.
This separation is important, because the two
types of terms play quite different roles in our
calculation. We treat the operator (H»+H„) ex-
actly, since it mixes degenerate orbitals, thus
broadening the bonding and antibonding manifolds
into the valence and conduction bands, respec-
tively. However, (H„+H„) couples nondegen-
erate states whose energies differ by 2tV, t, and
can legitimately be treated in perturbation the-
ory.

To apply this argument, consider the truncated
Hamiltonian

1 =e 5FHe

and choose

(S)

i[T, Hd;, g]+(H~, +H,~}=0.

This procedure parallels that used in effective-
mass theory. The new Hamiltonian, to second

Hd;, g=HO+ (H»+ H„).
The diagonalization of even this reduced Hamilto-
nian. is a difficult task. However, to evaluate
the susceptibility, one does not require the indi-
vidual eigenfunctions and eigenvalues of Ird;, .
For that purpose, it suffices to know the sum of
gl/ valence-band energies —a sum which can
easily be calculated whenever the conduction and
valence bands are decoupled. The total energy
is then the trace of Eq. (7) over any complete set
of valence-band states. It will prove convenient
to use the bonding states for this purpose.

To calculate the susceptibility in powers of (V, /
V, ), we transform the complete Hamiltonian via
successive canonical transformations, as fol-
lows:

1370



VOLUME $ 5, +UMBER 20

order in T, is

PHYSICAL REVIEW LETTERS
I

17 NovEMBER 1975

&p, blH I p', »=&p, blHd;. , I
p', »

((l., blFI, lu, a)(n, alH, IP', 5) ((1, blH„la, g)(a, alH„IP', b)IE.(~) -E,(P) E.(~) -E,(P')

where the labels g a.nd a index the bonding (IP, 5)) and antibonding (Io., a)) eigenfunctions of Hd;, . The
valence and conduction bands are now decoupled to order (V, /V, )'. In lowest approximation, [E,(n)
—E,(p)]=2!V,!and the sum over intermediate states can immediately be evaluated. The total valence-
electron energy (including magnetic-field-dependent terms) is the trace of Eq. (10) in the bonding
representation. This expression contains both paramagnetic and diamagnetic terms. The former
arise from the matrix elements of B,~+H~„hence they depend upon bond angles and crystal coordina-
tion. The latter emerge from the IId, , term.

To extend this procedure to next order in (V, /V, ), we keep higher powers of T in Eq. (8), and expand
the energy denominator of Eq. (10) about the "average" gap E,= 2!V,I. T-he result is a series of com-
mutators of the form H„[Hd. . . [Hd, , , [Hd;, , H„]]]which again can be evaluated with trace meth-
ods. To order (V, /V, )',

E, 4iV,
Since (V, /V, ) (0.5, ' the second-order terms in Eq. (11) are small and may be ignored. Equation (11)
was derived on the assumption of zero overlap between orbitals that form a bond. With overlap, the
expression is modified as follows":

—Ne' N eh 2 1 1

J 2 mc 1 —S E (12)

where E is the energy gap modified for overlap.
Equation (12) is our final result, which we com-
pare with the HKF model. Their diamagnetic and
paramagnetic terms can now be identified with
mell-defined, gauge-invariant quantities: the
orbita. l area (r,'( j)),«„, the overlap area
(ri'( j))„,,»z, the overlap integral S, and the
energy gap E,. l Ml', which depends only on the
geometrical arrangement of the bonds, is given
by

I
M I

' = (1—S') '(e k/mc)'Ã~. (13)

Here N, is Avogadro's number. This result im-
plies that IMI' is constant for all covalent tetra-
hedrally bonded materials, as observed by HKF.
With the value 8= 0.5,"Eq. (13) gives IMI'= l.7
&&10 ' eV cm'/mole, in good agreement with the
experimental values' 1.8+0.6 (diamond), 1.8
+0.3 (Si), a,nd 2. 2 +0.2 (Ge) in units of 10 ' eV
cm'/mole.

To evaluate the diamagnetic terms in Eq. (12),
we have used Herman-Skillman wave functions"
to calculate (ri'( j))„„&.It can be shown" that
(ri'( j)),„«„zs(0.15)(ri'(j))„,». Our results"
for ri agree with experimental values' (indicated
in parentheses): diamond 0.84 A (1.04 + 0. 15 A),
Si 1.23 A (1.32+0.1 A), Ge 1.25 A (1.48+0.06 A).

! In conclusion, we have derived a particularly
simple expression for the susceptibility of tetra-
hedral semiconductors in terms of gauge-invari-
ant quantities characterizing the chemical bond-
ing and the spatial structure of the solid. Work
is presently under way to extend our formalism
to differently coordinated solids and to amor-
phous materials.
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The magnetic susceptibility of an intrinsic tetrahedrally coordinated semiconductor is
calculated using a tight-binding basis and approximations appropriate to the bond-orbit-
al model. The susceptibility associated with the valence electrons is found to separate
into a diamagnetic Langevin component and a paramagnetic Van Vleck component, both
of which are found to be proportional to the square of the bond length, and nearly cancel
in the homopolar semiconductors. The Langevin term is found to be approximately inde-
pendent of polarity while the paramagnetic component varies with polarity, &&, as (1

p~ 2)3/2

The measured magnetic susceptibility, X, of a
large class of semiconductors shows variations
which seem to be related to the nature of the
chemical bonding and in some cases to the pres-
ence or absence of long-range order."For ex-
ample, the (diamagnetic) susceptibility of crystal-
line GaAs is about twice as large as that of crys-
talline Ge, and amorphous Ge is about 2.V times
more diamagnetic than crystalline Ge.'

The purpose of this Letter is to present a sim-
ple model which elucidates the nature of the re-
lationship between X and the chemical bond for
the class of tetrahedrally coordinated crystals.

It is relatively easy to evaluate the orbital mag-
netic susceptibility of a solid in terms of the
exact eigenfunctions of the solid. This corre-
sponds to treating the solid as a giant "molecule. "
However, as soon as one attempts to express the
susceptibility in a tight-binding basis the neces-
sity of maintaining gauge invariance presents
complications. A general tight-binding theory
considering these complications was presented
earlier. ' The purpose of this Letter has been to
evaluate the susceptibility obtained in Ref. 3 for

a model which both is simple and yet contains
enough information to enable us to understand
variations from material to material. For this
purpose we chose the bond-orbital model. ~' The
advantage of this model lies in the fact that the
coefficients of these hybrids involve parameters
which have already been obtained for many semi-
conductors from dielectric and optical data. Fur-
thermore, this model also allows a separate eva1-
uation of the (valence electron) Langevin and Van
Vleck contributions to g. The calculation shows
that whereas the main contribution to the Lange-
vin-like terms XL is only weakly dependent on
polarity, the paramagnetic contribution y~ has a
strong dependence. Our results indicate that the
reduction of X~ in the more polar crystals is
caused not only by the larger gap between the
valence and conduction states but also directly
through a reduction of matrix elements in in-
creasingly polar solids. This helps to explain
the variation of the parameter 8 in the simple
model for y~ used by Hudgens, Kastner, and
Fritzsche' to separate their measured suscep-
tibilities into paramagnetic and diamagnetic corn-


