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Determination of the Oxygen Binding Site on GaAs(110)
Using Soft-X-Ray-Photoemission Spectroscopy
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Stanford Electronics Laboratories and Stanford Synchrotron Radiation Project,

Stanford Unioersity, Stanford, California 94305
(Received 25 August 1975)

The first steps in the oxidation of GaAs(110) are examined through shifts in the As and
Ga 3d levels as a function of oxygen exposure. We observe a large chemical shift in the
As 341evels (about 4 eV) while the Qa 3d levels were shifted by less than 1 eV. This
gives direct evidence for oxygen bonding to arsenic at the QaAs(110) surface, and illus-
trates the change in chemical character which can take place in atoms at the surfaces of
compounds.

In the past few years, a question has been
raised concerning the binding site (or sites) of
oxygen on gallium arsenide. The answer to this
question is important not only because it will
help clarify some aspects of the various GaAs
surface-state models, but it will also help in the
understanding of the passivation of practical
GaAs surfaces. In addition it provides a test of
the applicability of different techniques for study-
ing the oxidation properties of other III-V com-
pounds as well as semiconductors in general.
Furthermore, the behavior of GaAs during oxi-
dation illustrates the way in which the surface
chemistry of a covalent compound can differ
from that expected from bulk heats of reaction
and thermodynamic arguments. The oxidation of
GaAs has been studied extensively by ultraviolet
photoelectron spectroscopy, ' ellipsometry, '
electron ener gy-loss spectroscopy, ' 4 Auger
electron spectroscopy, ' 4 low-energy electron
diffraction, ' and flash desorption. ' Recent work
by Dorn, Luth, and Russel, ' Froitzheim and
Ibach, ' and Gregory eI, al,.' on the nonpolar GaAs
(110) cleaved surface suggests that oxygen binds
preferentially to the surface arsenic atoms
whereas studies on polar GaAs surfaces by Lu-
deke and Koma' and Arthur' imply that oxygen
sticks to the surface gallium atoms. Since the
reported results are from different surfaces and
from surfaces prepared in different ways, cau-
tion must be exercised in generalizing the con-
clusions from one system to another.

It is a well known fact that inner core levels
shift in energy as a function of chemical environ-
ment. This chemical shift has been used exten-
sively in the field of x-ray photoemission spec-
troscopy as an aid in determining numbers of
bonding states as well as the amount of charge
transferred upon formation of various chemical

bonds. ' The results presented here use the
chemical shift information from the 3d levels of
gallium and arsenic to study the bonding states
of the gallium and arsenic atoms during the oxi-
dation of the GaAs (110) surface. Furthermore,
the shorter escape depths for electrons photo-
emitted from the As and Ga 3d levels by photons
in the range 80 to 350 eV give a significant in-
crease in surface sensitivity over conventional
x-ray photoemission techniques employing Al
Kn radiation. '

The apparatus used in these studies consists
of an ultrahigh-vacuum system (base pressure
& 6x10 "Torr) with a double-pass cylindrical
mirror analyzer, a multisample holder, a cleav-
er, Au and Cu evaporation sources, and gas-
handling facilities. As a light source, we used
synchrotron radiation at the Stanford Synchro-
tron Radiation Project emitted from the storage
ring SPEAR at the Stanford Linear Accelerator
Center. The general properties of synchrotron
radiation as well as the relevant SPEAR parame-
ters have been discussed elsewhere. ' The mo-
nochromator that was used for these studies is
of the grazing-incidence type and is also de-
scribed elsewhere. ' We were able to obtain use-
ful radiation for photoemission experiments in
the photon energy range from 32 to 350 eV at a
resolution of 0.1 A.

The GaAs samples were 5&&5&13 mm' with the
long axis along the (110) direction. The P-type
samples were Zn doped with P = 6X 10" cm ' and
the n-type samples were Te doped with n = 3.5
x10" cm '.

The measurements were done by first cleaving
both the n- and P-type samples in si tu (P & 1
x10 ' Torr) and taking a set of electron energy-
distribution curves (EDC's) for different photon
energies. Then, the samples were simultaneous-
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synchrotron radiation in studying various gas
sorption and oxidation problems by choosing a
photon energy for optimum cross section and
surface sensitivity. These methods should be
applicable to the study of adsorption on many
other systems.
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Frequency Dependence of the Electron Conductivity in the Silicon Inversion Layer
in the Metallic and Localized Regimes
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The conductivity of electrons in the inversion layer of silicon has been measured from
0 to 40 cm ~ at 1.2'K in the metallic and localized regimes. The correlation between o (T)
and o(~) in the localized regime suggests that the drop in conductivity at low electron
concentrations is caused by the appearance of a gap at the Fermi level.

Electrons in silicon inversion layers provide
us with a two-dimensional' electron gas whose
concentration can be varied by over two orders
of magnitude. The relative ease with which the
electron density can be varied has led to inter-
esting studies of many-body effects on the elec-
tron mass and g factor' and of "localization" of
the electrons at low concentrations. ' " The lat-
ter has recently attracted much attention but a
clear picture of the character of the electron
states at the Fermi level in the localized regime
has yet to emerge.

Following suggestions by Mott~ and Stern
number of investigators' ' "have examined the

behavior of the conductivity as a function of tem-
perature and electron concentration n„and con-
cluded that the conductivity near threshold may
be described by the Mott theory of Anderson lo.-
calization in a two-dimensional band tail. In de-
vices with a large amount of disorder at the in-
terface, the agreement with the Mott" theory is
striking, especially with regard to variable-range
hopping. In other devices which have considera-
bly less disorder as measured by fixed oxide
charge, Q», the observation of localization is
somewhat embarrassing. In these experiments
or devices results are obtained that raise serious
questions about the applicability of the Mott theo-
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