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Asymptotic Behavior of the Fixed-Point Hamiltonian and Eigenoperators
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The behavior of the fixed-point Hamiltonian, II*, and of the eigenoperators is derived
'for large values of the spatially uniform order parameter. When hyperscaling is valid
the limit of II is characterized by the exponent, P, but if hyperscaling is invalid this
limit is Gaussian-like. Possible implications of these results, including the significance
of marginal operators in approximate calculations, are discussed.

Great progress has been made in recent months
in the area of critical phenomena, based on the
renormalization-group approach of Wilson. "' In
spite of these remarkable developments, how-
ever, much still remains to be accomplished,
particularly with respect to three-dimensional
systems. Exact solutions of exact nonlinear re-
normalization-group equations~' are of course
not likely to be found and progress will therefore
be based on approximate calculational schemes,
such as have been suggested lately. & ' In all such
cases one is then faced with the problem of de-
termining the validity of the calculation. At the
moment the best guide is to compare the results
with those obtained by series expansion tech-
niques, but it is important to know what boundary
conditions, if any, must be satisfied by a solu-
tion of the renormalization-group equations. In
this note we present an initial investigation of
this question by determining by means of a heu-
ristic "hydrodynamic" argument the asymptotic
behavior of both the fixed-point Hamiltonian, H,
and the set of eigenoperators 10;) in the limit of
large values of the sPatially uniform order pa-

rameter, S. For convenience we limit our atten-
tion to the case of a scalar order parameter for
which our results are particularly simple, name-
ly, ignoring less important contributions from
gradient terms,

H*- VCS'"

and

0)(P)-BtS "&I"&,

where V is the volume, x, = —,(d —2+rt), B; is a
constant, and the density 0;(F) scales like" ' r "t

The value of C depends on whether or not the hy-
perscaling relation' 2d/(5+1) =d —2+q is valid.
If hyperscaling is valid, C is a nonzero constant.
Otherwise C = 0 so that the asymptotic behavior
of H* is Gaussian-like, i.e. , H* approaches a
constant which we have taken as zero in (1). Our
derivation of (2) assumes hyperscaling, as we
discuss below, although the result might be of
more general validity. Several interesting re-
sults follow from (1) and (2), as we discuss later.
One of the more notable ones is that the "bound-
ary conditions" (1) and (2) together with the as-
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H. ({S},4 (n)})=H.(H({M},{V })),

where {M}stands for the initial set of order-pa-
rameter variables such as the set of Fourier
transforms {Mg}, {S}stands for the new spin
variables (such as {Sg}),and {p,, }and {p,, (n) }
are the initial and transformed scaling field vari-
ables, respectively. If we follow the prescrip-
tion of Wilson, ' i.e. ,

exp[-H„„({sq})]
= f D {S}exp[-H„({gs,„})], (3)

then we have Mg =t;"S~„y with t; =b' "I' and b &1,
and F(JI„)= b""F(H), where F is the total free en-
ergy. Also, within the linear approximation we
have

H„=H*+g; i, b'"0; ({S}), (4)

where we have expanded H in terms of the set of
eigenoperators 0, conjugate to the scaling fields

and where 0, ({S})is the spatial integral of
0,. (P). The usual length-scaling assumption" '
then leads to y, =d -x;. Having made these pre-
liminary remarks we now discuss the derivation
of (1). We apply the renormalization transforma-
tion R„defined in (3) to an initial Hamiltonian
which is at criticality in all its field variables
{p;},except for a nonzero magnetic field, h, so
that the correlation length, g, is finite. We now

observe that for sufficiently large n, H„differs
from H* only by the renormalized Zeeman term,
so that

H„({S},h) =H+ —hV'"b'~ "S~=,. (5)

We now derive (1) from (5) by "hydrodynamic"
considerations. We introduce the local variables

sumption that one can expand II* in terms of the
basis {0,}require the existence of a marginal
operator, "'with y, =0. This suggests that one
requirement for an accurate approximate renor-
malization-group calculation is that one obtains
an eigenvalue as close to zero as possible, in or-
der to satisfy (1) as closely as possible. This
criterion also has been suggested recently by
Bell and Wilson, ' on the basis of a finite-lattice
model calculation. Our result would seem to pro-
vide an additional rationale for their suggestion.

We begin by summarizing some facts about the
renormalization group. Consider a renormaliza-
tion-group transformation' R„which when ap-
plied to an initial Hamiltonian H generates a se-
quence of Hamiltonians,

M('5) and S(1'„)by

M(~) =V "'Z~ "'M~, (6)

S(P„)=V„-"'gee~(d %„)S~, (7)

where r„=r/b", V„=V/b~, and the sums Qg and

Qg are restricted to 0&k &b " and the first Bril-
louin zone (0&k&1), respectively. The variable
M(P) is the coarse-grained value of Mg over a
volume of the order of b~vp where v, is the ini-
tial cell volume. Hence, since

V 'gg f (b"k) = b V 'gg f (k),

we obtain from (6) and (7) the relation" S(0„)
= b""~M(bP„) which mays small values of M (5) in-
to large values of S(P„). Thus

H „({S(f„)},h}=H„({b""'M('F)},h),
where by construction M('F) is smoothly varying
over a distance b" $„with $, =v, 'I" . Now with h
fixed, we choose ~ sufficiently large such that
b" $,» $ and consider a spatially uniform M (0)
=M. Since in this hydrodynamic region the trans-
formation (3) has resulted in integrating out all
those fluctuations which contribute to the critical
behavior of the system, we can identify b "~
xH„({b""'M},h) with the total free energy in the
sense of Landau, "F(M, h) =VA1tf "—VhM. Here
we should note that the k =0 component of the or-
der-parameter fluctuation is never eliminated by
the renormalization. Thus we have, in terms of
S,

H ({S}h) =Verb ~"S~+'-hVb~&" S,

with x=(6+1)(d —2+q)/2d —1. Now H„with h =0
must be independent of b in the limit of large n,
where H„-H*, so we immediately have the in-
equality" x& 0. If x =0 (hyperscaling) then (5)
and (8) lead to (1), with C =A w 0. If x &0, we
find the Gaussian-like asymptotic behavior, i.e. ,
(1) with C =0.

Our derivation of (2) proceeds along similar
lines. Consider now an initial H which is at crit-
icality except for one of its relevant variables
p;g 0 (so $ is again finite). Then the renormal-
ized Hamiltonian H„({S},p, ;) is given by

H„({S},p, ,-) =H„'({S})+ p, (n) 10,.(P) d'P,

where H„' denotes the renormalized critical Ham-
iltonian and where p &(n) = b"~Ip; in the linear re-
gion. Now assume that the asymptotic behavior
of 0, ('P) (which is a functional of {S}}behaves
like 0;(7) B,Se~ for -lar.ge values of a spatially
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uniform spin density. Then the second term of
the right-hand side of (9) behaves like b,b"'~p, VSe~

in the linear region. On the other hand, since
the correlation length is finite we have, as be-
fore, E(M, p, &)

= b ~H„(b"'"M, p;) so that we find"
from (9), for large S,

E(M, p, ) =b ~H„'(b""&M)

(10)

Hence in order for E(M, p, ,) -E(M, 0) to yield the
correct thermodynamic behavior for p;x 0 (p, ' "~

with a, =n for p. , =T —T„etc.'), the last term
on the right-hand side of (10) must remain finite
as n- ~. This requires that 8, =x,/x„ i.e. , Eq.
(2). The same argument can be extended to mar-
ginal (y, = 0) and irrelevant (y, &0) variables by
considering such a p, &

g 0 and at the same time
maintaining one of the relevant fields different
from criticality so as to keep $ finite. '4 As be-
fore, we are led to (2).

We now turn to a brief discussion of our re-
sults.

(a) We first note that since our analysis per-
tains only to the limit of a spatially uniform or-
der parameter, our results are limited to the
zero wave-number limit in the functional expan-
sion of the eigenoperators in powers of the Fou-
rier transform of the order parameter. Thus,
for example, we correctly predict this zero-mo-
mentum limit of the Gaussian-model' eigenfunc-
tions, i.e. , 0 -S"~0 "~o with x,/x„=m, using
the notation of Bef. 2. However, our analysis
does not extend to the wave-number-dependent
order parameter in the expansion of these oper-
ators, such as is associated with the eigenvalues
x ~=m(d -2)/2+P, with p a positive integer dif-
ferent from zero. We thus do not discuss effects
arising from gradients, etc.

(b) These results serve as boundary condi-
tions" on the renormalization-group equations.
It is even possible that one might use (1) to de-
termine 6 directly, as it is generally easier to
find asymptotic solutions of nonlinear equations
than exact (or even approximate) solutions. For
example, although analytical solutions of the ap-
proximate recursion equations derived by Wil-
son' and Nicoll, Chang, and Stanley" have not
been determined yet, it is easy to see that the
asymptotic solution is H*-SM &" '& (for 2&d & 4)
in both cases, so that from (1) we find 5 = (d+2)/
(d —2), as is to be expected since q =0 in both
these approximate equations. "

(c) We now consider the consequences of as-

suming that it is valid to expand' "H* as P p, *O,
If this expansion is correct for large S, then (1)
and (2) would imply that the limiting behavior of
H* comes from a marginal operator (i.e. , y, =0).
Hence one criterion for a valid approximate re-
normalization-group calculation is that there is
one eigenvalue very near zero. This might be
particularly useful for finite-lattice calculations
as has been originally suggested by Bell and Wil-
son. " Although this is a necessary criterion it is
of course not always a sufficient one. We also
note that the expansion of II* in terms of 0, to-
gether with (2) implies that the coefficient p, * of
all the irrelevant eigenoperators are zero.

(d) There is a simple interpretation of the re-
sult (2) which follows from considering a spatial-
ly varying version of the argument that leads to
(2). In this case one would find O, (R)™[S(R)]~
(where the spin variables contributing to 0, are
assumed to be localized in the vicinity of R).
Then consider the cumulant (0;(R)O;(0))-=G& (R)
which would be proportional to ([S(R)] ~[S(0)] «).
Then assuming hyperscaling, since" each power
of S contributes a, term x, = —,'(d —2+q) to the crit-
ical dimension of the cumulant, we would find 6,
-g ' ~"~=/ '"~, as is expected since', is the
critical dimension of 0, . In this regard it is al-
so interesting to speculate that the simplest situ-
ation would be (for integral dimension) 0;=x;/x„
where n, is some positive integer. If so, this
woul. d imply that the critical dimensions of eigen-
operators which do not contain gradient terms in
any:important way are given as simple multiples
of a single critical dimension, that of the order
parameter. The remaining eigenoperators will
then contain gradient terms and their eigenvalues
will be n;x, +P with some positive integer P. This
is in fact the case for the two-dimensional Ising
model" as well as for the Gaussian model. '
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The Westerbork synthesis radio telescope was used to measure the solar gravitational
deflection of radio waves over a period of 10 days, in October 1973, centered on the oc-
cultation of the quasar 3C279 by the sun. Simultaneous measurements at two frequencies
(5.0 and 1.4 GHz) allowed the removal of the effects of refraction in the solar corona.
The gravitational bending measured was 1.038+ 0.033 times that predicted by general
relativity. As a by-product of these observations, values for the parameters at a model
of the coronal electron density were also obtained.

The solar gravitational deflection of the quasar
3C279 was measured with the Westerbork syn-
thesis radio telescope in October 1973 in a man-
ner similar to that described by Weiler, Ekers,
Raimond, and Wellington' (hereafter referred to
as paper O. For the present observations we
added a second observing frequency to virtually
eliminate the effects of refraction in the solar

corona and hence to avoid the errors arising from
the use of coronal electron-density models. How-
ever, the component of atmospheric instability
which our double-interferometer observing tech-
nique could not eliminate was 2 to 3 times larger
than it had been in 1972. This then meant that the
improvement in accuracy of our results over
those of paper I was less than we had hoped. In


