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Exact Relations among Amplitudes at Critical Points of Marginal Dimensionality
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A renormalization-group analysis of a three-dimensional Ising model with dipolar forces
establishes a relation between the specific heat and the correlation length, in the limit ¢
=(T-T,)/T,—~ 0. Specific-heat data are used to predict £ ~1.41¢" 1/2|1m‘|1/6 A for LiTbF,. A
relation among the magnetization, the specific heat, and the susceptibility is also given.
Similar relations are found for n-component short-range models at d=4 and d=4—€.

The renormalization-group (RG) analysis of
phase transitions! predicts that mean-field the-
ory describes the correct critical behavior for
dimensionalities d>d*, where d*=4 for short-
range interactions® and d*=3 for uniaxial dipo-
lar ferromagnets or ferroelectrics?’® and for
tricritical behavior.* Atd=d*, the RG equations
can be solved exactly, yielding logarithmic cor-
rections to the mean-field behavior.?+3:5 Thus,
experiments at these “marginal” dimensionalities
provide a direct check of the RG theory. Indeed,
recent measurements of the specific heat per
unit volume, C, of the dipolar Ising ferromagnet
LiTbF, confirm the predicted asymptotic behav-
ior, i.e., C=Allnt|/®, wheret=(T -T,)/T,~0.°
(We assume T>T,; the case T<T, will be dis-
cussed at the end.) The situation is more com-
plex in measurements of the susceptibility, or
of the correlation length, since there the loga-
rithms are superimposed on powers of ¢. Thus,
measurements of the susceptibility and the mag-
netization of the same material” were only able
to yield an effective exponent, but not to identify
the predicted logarithmic corrections unambigu-
ously.

In this note, motivated by a hypothesis of Stauf-
fer, Ferer, and Wortis® termed “two-scale-fac-
tor universality,” we prove that the amplitudes
of the correlation length and of the specific heat
are related via a universal constant, which we
calculate explicitly and exactly for the dipolar
Ising model at d =d*=3 and for the short-range
n-component Heisenberg model at d =d*=4. The
Stauffer-Ferrer-Wortis hypothesis has previous-
ly been proven exactly only for the two-dimen-
sional Ising model® and for the spherical model.®
It has also been checked numerically in several
cases.® In fact, the hypothesis can be proved
generally in the framework of the RG.!° The
universal constant of the n-component theory has
been explicitly calculated in this context for d< 4,
to order €2, where e=4-d."*
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Using our result, one can now utilize the very
accurate data® on the specific heat of LiTbF, to
make predictions for the critical behavior of the
correlation length.

The wave-vector—dependent susceptibility of
the dipolar Ising model is predicted to behave as®

R(T,q)
=x@)1{1+&2[q% -hq,%+g.a,/a)?1} ™Y, (1)

where the asymptotic behavior of the “trans-
verse” correlation length £ is of the form &2
=¢2¢"!1nt |3, The parameter g,, which meas-
ures the relative strength of the dipolar interac-
tion, is asymptotically temperature independent,
and can be estimated by its mean-field value,
from measurements well above T,.” The param-
eter % is weakly decaying to zero as £ = 0.

From Eq. (1), one can define a “longitudinal”
correlation length, & =g01/ 2¢2, Both £ and £, can
be extracted from the contour in g space of the
surface on which X(7',q)=3x (T').”

Our calculation, described below, yields the
asymptotic relation

£2£,Ct?/ky=D|Int|, D=3/32n, (2)

where D is universal and k; is the Boltzmann con-
stant. Thus, we identify the amplitude of the cor-
relation length as £,*=Dkg /Ag,'/2. For LiTbF,, A/
kp= 5.975X 1072 A~3 (we use a density of 0.02258
mole cm™® and Ref. 6) and g,~ 1.56 A™2,7 and
hence we predict £,2~ 2.00 A2, Similarly, we
predict for the n-component Heisenberg model

{ nn+8) B
S@Tpr:n‘)llntl, d=4,
£°Ct* /lep = ( (3)
n@ +8) )
Zm[lw(e)], d=4-c,

This result agrees in the limit » —«~ with that of
the spherical model,® and relates to the different-
ly defined universal quantity calculated in Ref. 11
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vig a simple universal ratio. A calculation be-
low T ' gives the additional asymptotic relation'?

12T ,Cx/M?= (4 -n)!, (4)

where M is the magnetization, for the three-di-
mensional dipolar Ising model (z=1) and for the
n-component short-range model at d =4, (Cor-
rections are of order € ford=4-¢.)

Our method of calculation is based on a direct
integration of the RG recursion relations for the
free energy.!® For the uniaxial dipolar case, the
Hamiltonian may be written

R=-3[lro+a® - hyg .2 +8,a./a o507

~U, fafa,fﬁ,, 00§ 0gn0Z )
with
Jz=@nyefarq, 1q] <1,

In the dipolar regime, g,>7,. Atd=3, the RG
recursion relations were solved?® to yield, after
1 iterations (I>1),

gz=g0321, 7’1=7’0321(1+l/lo)-1/3,
u,=2mg M2 /91 +1,),

where [, is uniquely related tou, and g,. The co-
efficient 2 turns out to be irrelevant, and will
thus be ignored. The free energy, after [ itera-
tions, can be related to the original one via®®

F(r,g,u)/kBT=fo'GO(l')e-dt'dl’
+e " F(r,,g,,u,)/ksT, (6)

(5)

where, to lowest order inu,,
Go(1)=3K In(r, + 1 +g, cos?9)). )

Here, K, '=2%"'7"21(d/2) and the average (...)
is performed over the angles. We now choose to
stop iterations at a value / for which »;=1, and
thus g,> 1. An explicit calculation at d =3 gives
the largest singular term in F,

Fo/kgT=~ %1K 80" %70’ 1,
x[(1 +%lo-ll Inyo| )2 - 1], (8)

where we used I~ 3| In|. For small 7,ocf, this
yields F 3 In¢|¥3. The correlation length chang-
es under iteration as £;,=£¢"'.) Whenv,;=1, we
have £,=1+0(1,/1), and hence

E=el=r," Y31 +51,"Y Inr | )VE. 9)

Combining (8), (9), and the definition of &,, and
taking the limit of small »,, immediately leads to
the result (2). Note that all the nonuniversal pa-

rameters u,, £&,, etc., drop out. The derivation
of (3) is similar, and is based more directly on
the explicit expressions of Ref. 13.

In practice, one does not perform measure-
ments in the ultimate asymptotic region, in which
1+11ny,l /21, may be replaced by |In¢l/21,. It
is therefore wiser to include in the experimental
analysis higher-order terms, and fit the mea-
sured correlation lengths by a formula like (9),
i.e.,

2=t 2t In(t/t,)| M3,

The parameter Int, may result both from a term
In[ £ 2(21,)/%?"], as suggested by (9), as well as
from other correction terms, of order ¢! In¢| ~%/3
in £2. Indeed, the specific-heat measurements of
LiTbF, were fitted® by an analogous expression
[similar to (8)], with #,~0.315.'* In that case, a
recent analysis’® of higher-order terms in the re-
cursion relations showed that the correction
terms are of order Inllnt|/!1In¢|#3, but this is
practically indistinguishable from const/|1n¢| %3,
Although £, is nonuniversal, it is a reasonable
estimate to use in (10) the value of ¢, obtained
from the specific heat. A comparison of (10)
with preliminary measurements'® indeed leads to
an agreement of order 15% in &.

To check (4) for LiTbF,, we extracted asymp-
totic amplitudes for y and M from Ref. 7, using
the formulas

x=Tul £} In(to/| )] V2,
M*= B t|| In(t,/] ¢])|*'*,

(10)

(11)

and the relation’” I',/T'. =2. Results are consis-
tent with Eq. (4), but large uncertainties are in-
volved.

Before concluding, we make a few comments.
First, Eq. (2) can also be derived from explicit
expressions given in Ref. 2. Our results differ
from the ones obtained this way by a factor of 2.
This can be traced to the factor of § in Eq. (7),
which seems to be missing in Eq. (28) of Ref. 2.
Second, our calculation can easily be repeated
for T<T,. Since the amplitudes A and £,% are
then changed by factors of 4/% and 3, respective-
ly,'” we conclude that our result (2) is unchanged
(n=1) and that (3) must be divided by » for T<T,.
Finally, there are obvious further uses of the
idea presented here. For example, various ex-
act relations between amplitudes near tricritical
points*® at d =d* =3 can be derived, and used in
the complex analysis of experiments.

We have benefitted from discussions with
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Josephson Junctions in Transverse Magnetic Fields
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Recent observations by Rosenstein and Chen of dc Josephson tunnel-current diffraction
patterns occurring in a transverse magnetic field are ascribed to surface demagnetizing

currents feeding the interior of the junction.

Recently Rosenstein and Chen® have reported
the observation of a diffraction-pattern modula-
tion of the critical current I, of a Josephson tun-
nel junction caused by a magnetic field H applied
perpendicular to the plane of the thin films form-
ing the junction. We suggest that this effect is a
straightforward consequence of the pattern of sur-
face currents induced on the films by the magnet-
ic field, and that the phenomenological descrip-
tion of Ref, 1 invoking a characteristic “edge pen-
etration length” is not required.

The films, with the geometry shown in the in-
set of Fig. 1, lie in the x-y plane with H, (6=90°)
applied in the z direction, Label the upper and
lower surfaces of the upper film by 1 and 2 and
those of the lower film by 3 and 4. Denote the
overlapping portions of surfaces 2 and 3 which
form the junction as interior surfaces and the re-
maining visible portions as exterior surfaces,
We suppose that the films are thick compared to
the London penetration depth A but thin compared

1310

I(H) 7 I6(0)

20 40 60 80 100 120 140

H(mG)

FIG. 1. Calculated diffraction pattern in a transverse
field (6=90°) for the in-line geometry with equal-width
electrodes. The inset shows the actual geometry of the
sample used in Ref. 1 which had unequal film widths of
0.74 and 1.00 mm and a common overlay region 0,35
mm in length. Note that the current streamlines appear
continuous across the junction boundary, as discussed
in the text.



