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A particle moving in a uniform magnetic field is in resonance with an electrostatic plas-
ma wave for an infinite sequence of parallel velocities. Consequently simple perturbation
theory breaks down even if the wave amplitude is small. However a technique for calcu-
lating invariants in the presence of multiple resonances can be applied and yields results
in remarkable agreement with recently published numerical orbit calculations.

In a recent Letter, Smith and Kaufman' inves-
tigated the interaction between a charged parti-
cle and an electrostatic plasma wave in the pres-
ence of a uniform magnetostatic field. They re-
marked that the magnetic field greatly modifies
the effect of the interaction with the wave be-
cause there is then a set of resonant parallel
velocities v, = (&a+l 0)/k, . As a result of these
multiple resonances there is no simple invariant
as in the case of an unmagnetized plasma. They
presented' the results of numerical computations
of particle orbits for this problem and observed
that in some cases an additional constant of mo-
tion exists despite the multiple resonances.

The problem discussed by Smith and Kaufman
is very similar to that of the motion of a charged
particle in a spatially modulated magnetic field. '
Consequently the method introduced in Ref. 2 for
the calculation of invariants in the presence of
multiple resonances can easily be applied to the
present problem, The invariant calculated in this
way is in remarkable agreement with the numer-
ical computations of Smith and Kaufman.

In the wave frame, the Hamiltonian for the in-
teraction of a charged particle with a uniform
magnetic field and an electrostatic plasma wave
is'

H (1'
q p) = (p —m Qxy ) /2m + e4o 8111(k8 z +k ~x )~

where 0 =e&/mc and 4, is the wave amplitude.
After the canonical transformations used by Smith
and Kaufman this becomes

H(z,p. ,e,p, )

=p, '/2m+Qp ~+e4, sin(k, z —k~ p sing),

where p ~=mv s/20 is the canonical angular mo-
mentum of gyration, conjugate to the gyrophase
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[I„„,H, ] +[I„,H, ] = O

of which the first two are

BI,/By+p BI,/Bz =0,

BI,/By+p BI,/Bz+[I„H, ]=O.

(1)

(2)

Equation (1) indicates that I, may be an arbitrary
function of p. Then, after some elementary anal-
ysis similar to Ref. 2, we obtain

Io+ ~I

y) &I,g y)
si11(z —

leap )4,

y, and p = (2p ~/mQ)'t' is the gyroradius. An al-
ternative form, using a Bessel function identity,
18

H =p, 2/2m+Qp ~+eC,Q, J, (k ~p) sin(k, z —l y).
In the case of wave propagation at 45' to the mag-
netic field (k~ =k, ), with introduction of suitable
dimensionless variables [k~=k, =1, 0 =1, m =1,
p=(2P)' '], this may be reduced to H=H, +eH„
where

Ho =P +ps/2,

H, =Q, 8, (p) sin(z —ly),

and we have adopted the notation p, =—p, p ~=P.
(In dimensionless units the small parameter e is
just eC,.)

In the absence of interaction with the wave
there is a constant of motion P, in addition to
the energy, but this is clearly destroyed by the
resonant interaction when ~ 4 0. To generate a
new invariant when e is small but nonzero we
note that any constant of motion I satisfies [I,H]
= 0; then setting I=I,+&I,+. . . we obtain a set
of recurrence relations
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FIQ. 1. Surface-of-section plot, e =0.025. Compare
Fig. 1(b) of Ref. 1.

FIG. 2. Surface-of-section plot, c =0.1. Compare
Fig. 1{a) of Ref. 1.

The failure of simple perturbation theory near a
resonance is apparent, for el, is not necessarily
sm30, indeed it is usually infinite, near integral
values of p. This breakdown reflects the fact
that the topology of the true invariant differs
from 'that of Ip Blone, and I, becomes large in an
attempt to reduce this, thereby invalidating the
perturbation approach. However, this topolog-
ical change can be accommodated and &I, can re-
main small if we ensure that dI, /dp vanishes at
the resonant points. The arbitrariness in I, is
sufficient to allow this.

For the present problem, , a suitable choice of
I, is I,= cos(np)/w. Then

I=w 'cos(mp) —e sin(wp)Q4, (p)
sin(z —lp)

p

in which the second term is small when ~ is
smaQ, even at resonances.

A "surface-of-section" plot such as computed
by Smith and Kaufman can easily be derived from
this invariant and two examples are shorn in
Figs. 1 and 2. These are calculated for the pa-
rameter values used by Smith and Kaufman in
their Figs. 1(b) and 1(a), respectively. That is
y =m p = (2E -p')'~' and (2E)'~'=1.48 with ~

=0.025 for Fig. I and & =0.1 for Fig. 2. The
agreement between these figures and those of the
numerical orbits calculated in Ref. 1 is quite re-
markable.

This agreement confirms that when the behav-
ior of the orbit is nonergodic then, evenin the
presence of multiple resonances, an invariant
can be calculated with great accuracy by the
method of Ref. 2 when & is small. Of course,
neither these calculations, nor so far as we
know any other analytic procedure, can deter-
mine when the transition from adiabatic to sto-
chastic behavior occurs. The condition quoted
by Smith and Kaufman=that the lowest order
"islands" overlap'~ —is no more than a rough
guide. Indeed, our earlier calculations' showed
that for the particle in a modulated magnetic
field the onset of stochastic behavior occurred
well before these islands overlapped. Presum-
ably this was due to overlap of much higher-or-
der resonances. '

We wouM like to acknowledge the assistance of
T. J. Martin in the calculation of Figs. 1 and 2.
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