VOLUME 35, NUMBER 18

(11) and (12)]. Notice that when E = 0 in (2) the evolution equation (4) contains one derivative in y, whereas if $E \neq 0$ two derivatives in y appear in the evolution equation [see (7) and (10)]. Higher derivatives work in a similar way. This is analogous to the role of the dispersion relation in the one-dimensional problem.⁶

Note added.—We have become aware that Zakharov and Shabat¹² have obtained, by a different approach, the two- (spatial) dimensional three-wave interaction equations and Dryuma's result in Ref. 8.

*Work supported by National Science Foundation Grants No. GP32829X and No. GA27727A. Alfred P. Sloan Foundation Research Fellow, 1975-1977.

¹C. S. Gardner, J. M. Greene, M. D. Kruskal, and R. M. Miura, Phys. Rev. Lett. 19, 1095 (1967).

²C. S. Gardner, J. M. Greene, M. D. Kruskal, and R. M. Miura, Comments Pure Appl. Math. <u>27</u>, 97 (1974).

³V. E. Zakharov and A. B. Shabat, Zh. Eksp. Teor. Fiz. <u>61</u>, 118 (1972) [Sov. Phys. JETP <u>34</u>, 62 (1972)].

⁴P. D. Lax, Comments Pure Appl. Math. <u>21</u>, 467 (1968).

⁵M. J. Ablowitz, D. J. Kaup, A. C. Newell, and H. Segur, Phys. Rev. Lett. <u>31</u>, 125 (1973).

⁶M. J. Ablowitz, D. J. Kaup, A. C. Newell, and H. Segur, Stud. Appl. Math. 53, 249 (1974).

⁷V. E. Zakharov and S. V. Manakov, Pis'ma Zh. Eksp. Teor. Fiz. <u>18</u>, 413 (1973) [JETP Lett. <u>18</u>, 243 (1973)].

⁸V. S. Dryuma, Pis'ma Zh. Eksp. Teor. Fiz. <u>19</u>, 753 (1974) [JETP Lett. <u>19</u>, 387 (1974)].

⁹M. J. Ablowitz and R. Haberman, to be published.

¹⁰D. J. Benney and A. C. Newell, J. Math. Phys. <u>46</u>, 133 (1967).

¹¹H. Chen, to be published.

¹²V. E. Zakharov and A. B. Shabat, Funkts. Anal. Prilozh. <u>8</u>, No. 3, 43 (1974) [Func. Anal. Applic. 8, 226 (1974)].

Theories of Gravity with Structure-Dependent γ 's

M. Camenzind

Institute for Theoretical Physics, University of Berne, 3012 Berne, Switzerland (Received 28 July 1975)

A gauge theory for the Lorentz connection of a space-time describes geometries of stars with variable parametrized post-Newtonian parameter γ ; its value depends explicitly on the structure of a star: The value of γ for a neutron star is different from that for the solar system $(|\gamma_{\odot}^{-1}| \leq 10^{-2})$. Because of the absence of a "local parity invariance" γ is positive for ordinary stars and γ is negative for sources of gravity consisting of antimatter.

Several recent Letters¹⁻³ present various aspects of two-parameter static and spherically symmetric space-time geometries, generated by Yang's gravitational field equations $R_{ab:c} - R_{ac:b}$ $=0.^{4}$ The geometric background of these field equations has partially been discussed by Kilmister and Newman,⁵ they have been used by Lichnerowicz⁶ in his quantization of the gravitational field, and they appear in Bel's investigation of the super-energy-momentum tensor of the gravitational field⁷; the Lagrangian for Yang's equations has been noted by Eddington⁸ as an alternate choice for gravitation. The space-time connections discussed in Refs. 1-3 may be classified by means of the family of vacuum solutions of the curvature dynamical equations,^{9,10} which are the natural gauge equations of second order for the

connection of the Lorentz-frame bundle of a static and spherically symmetric space-time (here given in terms of Schwarzschild's coordinates, $g_{00} = e^{2\mu}$, $g_{11} = e^{-2\lambda} \equiv \Delta^{-2}$),

$$r^{-2}(r^{2}f')' - 2r^{-2}f = -e^{-1\lambda}f'\chi(\Delta', f) + \kappa j^{(1)0}e^{2(\mu - \lambda)}, \qquad (1)$$

$$\begin{split} &\hat{z}\Delta^2 - r^{-2}(\Delta^2 - 1) \\ &= -e^{-\mu}f\chi(\Delta', f) + \kappa e^{-\lambda} r^2 S^{(3)2} \,, \end{split}$$

$$\chi(\Delta', f) \equiv \Delta' - e^{-\mu}f . \tag{3}$$

 $f = (e^{\mu})'\Delta$ represents the gravitational force measured in the static frame of reference; $j^{(1)0}(r)$ and $S^{(3)2}(r)$ are the only nonvanishing components of the external Lorentz current \tilde{J}^{Q} which couples matter to geometry. Any static and spherically symmetric connection which is regular in the

asymptotic region and a solution of Eqs. (1) and (2) with $j^{(1)0} = 0$ and $S^{(3)2} = 0$ has the following form parametrized by the corresponding mass M, parametrized post-Newtonian parameter $\gamma \in R$, and parity parameter $\beta_0 = \pm 1$:

$$e^{2\mu} = 1 - 2x + \sum_{n=2}^{\infty} A_n(\gamma, \beta_0) x^n, \quad x \equiv M/r,$$
 (4)

$$\Delta^{2} = 1 - 2\beta_{0}\gamma x + \sum_{n=2}^{\infty} R_{n}(\gamma, \beta_{0})x^{n}, \qquad (5)$$

$$f = \beta_0 (M/r^2) N(x; \gamma, \beta_0), \qquad (6)$$

$$N = 1 - \frac{1}{2} (1 - \beta_0 \gamma) x + \sum_{n=2}^{\infty} Q_n(\gamma, \beta_0) x^n .$$
 (7)

The coefficients A_n , R_n , and Q_n are polynomials of order n in γ ; they all have a zero at $\beta_0\gamma = 1$; i.e., $\beta_0 = +1$ and $\gamma = 1$ reproduce the exterior Schwarzschild connection.¹¹ The expansion (4)– (7) is only valid in the asymptotic region defined by $x < \epsilon$, where $\epsilon \simeq 1$. The usual parametrized post-Newtonian parameter γ , β , and λ_p ,¹² which characterize the light deflection $\theta = \theta_E(\gamma + 1)/2$, the nonlinearity in the gravitational potential, and the perihelion shift $\delta \Phi = (\delta \Phi)_E \lambda_p$,¹³ are completely determined by γ itself,

$$\beta = \beta(\gamma) = \frac{1}{4}(3+\gamma), \quad \gamma \in \mathbb{R}, \qquad (8)$$

$$\lambda_{p} = \lambda_{p}(\gamma) = \frac{1}{12}(5 + 7\gamma) . \tag{9}$$

 $\gamma = -1$ [which corresponds to solution (2) in Ref. 3] would produce a vanishing light deflection, and $\gamma < -\frac{5}{7}$ a retrograde perihelion shift; in particular $\gamma = -1$ generates a retrograde perihelion shift of $\frac{1}{6}$ the Einsteinian value.³ Geometries with $\beta_0 = +1$ are expressed in terms of a right-handed tetrad, and those having $\beta_0 = -1$ in terms of a left-handed one; if $\gamma > 0$, the corresponding geometries (4)-(7) have positively oriented 2-spheres (t = const, $\gamma = \text{const}$), and for $\gamma < 0$ we obtain negatively oriented 2-spheres. Finally, a theory of gravity described by Eqs. (1) and (2) is no longer β_0 invariant (i.e., not "locally parity invariant"); however it is invariant under the combined transformation $\beta_0 - \beta_0$ and $\gamma - \gamma$.¹⁰ A further distinction to the Schwarzschild geometry is important: The geometries (4)-(7) are not able to form a regular event horizon unless $\gamma = 1$ and $\beta_0 = +1$; if $r \rightarrow r_0$, where $e^{2\mu}(r_0) = 0$ and $r_0 \simeq 2M$, infinite tidal forces would arise¹¹; in other words, the Schwarzschild geometry cannot be continuously embedded into the family (4)-(7).

At various places¹⁻³ it has been pointed out that most of the geometries (4)-(7) are unphysical

since their γ 's are in harsh contrast to the values of γ measured in the solar system. However, theories of the type (1) and (2) characterize the state of static sources of gravity by means of two parameters: their mass M and their structure parameter γ ; for curvature dynamical theories of gravity γ is a source-related parameter, while in any theory of the Einsteinian type γ appears definitely fixed by coupling constants. If, therefore, a curvature dynamical theory of gravity has to be viable, it must predict for the solar system $\gamma_{\odot} = 1 - \epsilon_{\odot}$ with $|\epsilon_{\odot}| \lesssim 10^{-2}$; in general, however, different types of stars have different γ 's, and so, e.g., $\gamma_{n \text{ star}} \neq \gamma_{\odot}$. It is therefore of primary experimental importance to measure the values of γ for different types of sources of gravity, particularly for neutron stars. Quite general physical arguments show¹⁴ that γ depends on the mass-to-radius ratio (M/R) of a star; it was found that the relation $\gamma = 1 - \epsilon$ with $\epsilon \simeq M/R$ (and $\epsilon_{\odot} = 2 \times 10^{-6}!$). For stars consisting of normal matter γ would always be positive ($\gamma_{n \text{ star}} \simeq 0.8$); whether geometries with negative γ 's might be attributed to stars consisting of antimatter is an open question, but seems, however, to be a very promising interpretation. Stars consisting of antimatter would then generate a retrograde periastron shift.

- ¹R. Pavelle, Phys. Rev. Lett. <u>33</u>, 1461 (1974).
- ²A. H. Thompson, Phys. Rev. Lett. <u>34</u>, 507 (1975).
- ³R. Pavelle, Phys. Rev. Lett. <u>33</u>, 1114 (1975).
- ⁴C. N. Yang, Phys. Rev. Lett. <u>33</u>, 445 (1974).

⁵C. W. Kilmister and D. J. Newman, Proc. Cambridge Philos. Soc. 57, 851 (1961).

⁶A. Lichnerowicz, C. R. Acad. Sci. 247, 433 (1958).

⁷L. Bel, C. R. Acad. Sci. <u>248</u>, 1297 (1959).

- ⁸A. Eddington, *The Mathematical Theory of Relativity* (Clarendon Press, Oxford, England, 1923).
- ⁹M. Camenzind, J. Math. Phys. (N.Y.) <u>16</u>, 1023 (1975). ¹⁰M. Camenzind and M. A. Camenzind, Gen. Relativ. Gravitation 6, 175 (1975).

¹¹M. Camenzind and M. A. Camenzind, "On the Embedding of Einstein's Schwarschild Connection and the Schwarzschild Black Hole" (to be published).

¹²C. W. Misner, K. S. Thorne, and J. A. Wheeler, *Gravitation* (Freeman, San Francisco, Calif. 1973), Sect. 39.

¹³S. Weinberg, *Gravitation and Cosmology* (Wiley, New York, 1972).

¹⁴M. Camenzind, "Strong and Weak Sources of Gravity—the Structure Degeneracy of the Schwarzschild Space-Time" (to be published).