(11) and (12)]. Notice that when $E = 0$ in (2) the evolution equation (4) contains one derivative in y, whereas if $E \neq 0$ two derivatives in y appear in the evolution equation [see (7) and (10)]. Higher derivatives work in a similar way. This is analogous to the role of the dispersion relation in the one-dimensional problem.⁶

Note added. —We have become aware that Zakharov and Shabat¹² have obtained, by a different approach, the two- (spatial) dimensional three-wave interaction equations and Dryuma's result in Ref. 8.

*Work supported by National Science Foundation Grants No. GP32829X and No. GA27727A. Alfred P. Sloan Foundation Research Fellow, 1975-1977.

 1 C. S. Gardner, J. M. Greene, M. D. Kruskal, and R. M. Miura, Phys. Rev. Lett. 19, 1095 (1967).

 2 C. S. Gardner, J. M. Greene, M. D. Kruskal, and R. M. Miura, Comments Pure Appl. Math. 27, 97 (1974).

 ${}^{3}V.$ E. Zakharov and A. B. Shabat, Zh. Eksp. Teor. Fiz. 61, 118 (1972) [Sov. Phys. JETP 34, 62 (1972)].

 P^4 P. D. Lax, Comments Pure Appl. Math. 21, 467 (1968).

 5 M. J. Ablowitz, D. J. Kaup, A. C. Newell, and H. Segur, Phys. Rev. Lett. 31, 125 (1973).

 $6M$, J. Ablowitz, D. J. Kaup, A. C. Newell, and H. Segur, Stud. Appl. Math. $\overline{53}$, 249 (1974).

 ^{7}V . E. Zakharov and S. V. Manakov, Pis'ma Zh. Eksp. Teor. Fiz. 18, 413 (1973) [JETP Lett. 18, 243 (1973)].

 ${}^{8}V$. S. Dryuma, Pis'ma Zh. Eksp. Teor. Fiz. 19, 753 (1974) [JETP Lett. 19, 387 (1974)].

 9 M. J. Ablowitz and R. Haberman, to be published.

 10 D. J. Benney and A. C. Newell, J. Math. Phys. 46, 133 (1967).

 11 H. Chen, to be published.

 ^{12}V , E. Zakharov and A. B. Shabat, Funkts. Anal. Prilozh. 8, No. 3, 43 (1974) [Func. Anal. Applic. 8, 226 (1974)].

Theories of Gravity with Structure-Dependent γ 's

M. Camenzind

Institute for Theoretical Physics, University of Berne, 3012 Berne, Switzerland (Received 28 July 1975)

A gauge theory for the Lorentz connection of a space-time describes geometries of stars with variable parametrized post-Newtonian parameter γ ; its value depends explicitly on the structure of a star: The value of γ for a neutron star is different from that for the solar system $(|\gamma_{c}^{-1}| \leq 10^{-2})$. Because of the absence of a "local parity invariance" γ is positive for ordinary stars and γ is negative for sources of gravity consisting of antimatter.

Several recent Letters¹⁻³ present various aspects of two-parameter static and spherically symmetric space-time geometries, generated by Yang's gravitational field equations $R_{ab,c} - R_{ac,b}$ $=0.^4$ The geometric background of these field equations has partially been discussed by Kilmis t ter and Newman,⁵ they have been used by Lichnerowicz⁶ in his quantization of the gravitational field, and they appear in Bel's investigation of the super-energy-momentum tensor of the gravitational field'; the Lagrangian for Yang's equations has been noted by Eddington⁸ as an alternate choice for gravitation. The space-time connections discussed in Refs. 1-3 may be classified by means of the family of vacuum solutions of the means of the family of vacuum solutions of the
curvature dynamical equations, 910 which are the natural gauge equations of second order for the

connection of the Lorentz-frame bundle of a static and spherically symmetric space-time (here given in terms of Schwarzschild's coordinates,
 $g_{00} = e^{2\mu}$, $g_{11} = e^{-2\lambda} \equiv \Delta^{-2}$),

$$
\begin{aligned} r^{-2} (r^2 f')' - 2r^{-2} f \\ &= -e^{-1\lambda} f' \chi(\Delta', f) + \kappa j^{(1)} e^{2(\mu - \lambda)}, \end{aligned} \tag{1}
$$

$$
\frac{1}{2}\Delta^{2''} - r^{-2}(\Delta^2 - 1) = -e^{-\mu}f\chi(\Delta', f) + \kappa e^{-\lambda} r^2 S^{(3)2},
$$
\n(2)

$$
\chi(\Delta', f) \equiv \Delta' - e^{-\mu} f \tag{3}
$$

 $f = (e^{\mu})' \Delta$ represents the gravitational force measured in the static frame of reference; $j^{(1)}$ ^o (r) and $S^{(3)2}(r)$ are the only nonvanishing components of the external Lorentz current \tilde{J}^Q which couples matter to geometry. Any static and spherically symmetric connection which is regular in the

asymptotic region and a solution of Eqs. (1) and (2) with $i^{(1)}$ ^o = 0 and $S^{(3)2}$ = 0 has the following form parametrized by the corresponding mass M , parametrized post-Newtonian parameter $\gamma \in R$, and parity parameter $\beta_0 = \pm 1$:

$$
e^{2\mu} = 1 - 2x + \sum_{n=2}^{\infty} A_n(\gamma, \beta_0) x^n, \quad x \equiv M/r,
$$
 (4)

$$
\Delta^2 = 1 - 2\beta_0 \gamma x + \sum_{n=2}^{\infty} R_n(\gamma, \beta_0) x^n,
$$
 (5)

$$
f = \beta_0 (M/r^2) N(x; \gamma, \beta_0), \qquad (6)
$$

$$
N = 1 - \frac{1}{2}(1 - \beta_0 \gamma)x + \sum_{n=2}^{\infty} Q_n(\gamma, \beta_0)x^n.
$$
 (7)

The coefficients A_n , R_n , and Q_n are polynomials of order *n* in γ ; they all have a zero at $\beta_0 \gamma = 1$; i.e., $\beta_0 = +1$ and $\gamma = 1$ reproduce the exterior i.e., $\beta_0 = +1$ and $\gamma = 1$ reproduce the exterior
Schwarzschild connection.¹¹ The expansion (4)-(7) is only valid in the asymptotic region defined by $x \leq \epsilon$, where $\epsilon \approx 1$. The usual parametrized by $x < \epsilon$, where $\epsilon \simeq 1$. The usual parametrized
post-Newtonian parameter γ , β , and λ_{p} ,¹² which characterize the light deflection $\theta = \theta_E(\gamma + 1)/2$, the nonlinearity in the gravitational potential, and the nonlinearity in the gravitational potential, and the perihelion shift $\delta\Phi = (\delta\Phi)_E \lambda_{p}$,¹³ are completel determined by γ itself,

$$
\beta = \beta(\gamma) = \frac{1}{4}(3+\gamma), \quad \gamma \in R, \qquad (8)
$$

$$
\lambda_{p} = \lambda_{p}(\gamma) = \frac{1}{12}(5 + 7\gamma) . \tag{9}
$$

 $\gamma = -1$ [which corresponds to solution (2) in Ref. 8] would produce a vanishing light deflection, and γ < - $\frac{5}{7}$ a retrograde perihelion shift; in particular γ = -1 generates a retrograde perihelion shift of $\frac{1}{6}$ the Einsteinian value.³ Geometries with $\beta_0 = +1$ are expressed in terms of a right-handed tetrad, and those having $\beta_0 = -1$ in terms of a left-handed one; if $\gamma > 0$, the corresponding geometries (4)-(7) have positively oriented 2-spheres $(t = const,$ $r = const$, and for $\gamma < 0$ we obtain negatively oriented 2-spheres. Finally, a theory of gravity described by Eqs. (1) and (2) is no longer β_0 invariant (i.e., not "locally parity invariant"); however it is invariant under the combined transformation β_0 + - β_0 and γ + - γ .¹⁰ A further distinction to the Schwarzsehild geometry is important: The geometries (4) - (7) are not able to form a regular event horizon unless $\gamma = 1$ and $\beta_0 = +1$; if $r \rightarrow r_0$, where $e^{2\mu}$ (r_0) = 0 and $r_0 \approx 2M$, infinite tidal forces would arise¹¹; in other words, the Schwarzschild geometry cannot be continuously embedded into the family $(4)-(7)$.

 $\text{At various places}^{1-3}$ it has been pointed out that most of the geometries $(4)-(7)$ are unphysical

since their γ 's are in harsh contrast to the values of γ measured in the solar system. However, theories of the type (1) and (2) characterize the state of static sources of gravity by means of two parameters: their mass M and their structure parameter γ ; for curvature dynamical theories of gravity γ is a source-related parameter, while in any theory of the Einsteinian type γ appears definitely fixed by coupling constants. If, therefore, a curvature dynamical theory of gravity has to be viable, it must predict for the solar system $\gamma_{\odot} = 1 - \epsilon_{\odot}$ with $|\epsilon_{\odot}| \lesssim 10^{-2}$; in general, however, different types of stars have different γ 's, and so, e.g., $\gamma_{n \text{ star}} \neq \gamma_{\alpha}$. It is therefore of primary experimental importance to measure the values of γ for different types of sources of gravity, particularly for neutron stars. Quite general physical arguments show¹⁴ that γ depends on the mass-to-radius ratio (M/R) of a star; it was found that the relation $\gamma = 1 - \epsilon$ with $\epsilon \simeq M/R$ (and $\epsilon_{\odot} = 2 \times 10^{-6}$!). For stars consisting of normal matter γ would always be positive $(\gamma_{n \text{ star}} \approx 0.8)$; whether geometries with negative γ 's might be attributed to stars consisting of antimatter is an open question, but seems, however, to be a very promising interpretation. Stars consisting of antimatter would then generate a retrograde periastron shift.

- 1 R. Pavelle, Phys. Rev. Lett. 33, 1461 (1974).
- 2 A. H. Thompson, Phys. Rev. Lett. 34, 507 (1975).
- ${}^{3}R.$ Pavelle, Phys. Rev. Lett. 33, 1114 (1975).

 ${}^{4}C$. N. Yang, Phys. Rev. Lett. 33, 445 (1974).

 ${}^{5}C$. W. Kilmister and D. J. Newman, Proc. Cambridge Philos. Soc. 57, 851 (1961).

 $6A.$ Lichnerowicz, C. R. Acad. Sci. 247, 433 (1958).

 7 L. Bel, C. R. Acad. Sci. 248, 1297 (1959).

- 8 A. Eddington, The Mathematical Theory of Relativity (Clarendon Press, Oxford, England, 1928).
- 9 M. Camenzind, J. Math. Phys. (N.Y.) 16, 1023 (1975). ¹⁰M. Camenzind and M. A. Camenzind, Gen. Relativ. Gravitation 6, 175 (1975).

 11 M. Camenzind and M. A. Camenzind, "On the Embedding of Einstein's Schwarschild Connection and the Schwarzschild Black Hole" (to be published).

 12 C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation (Freeman, San Francisco, Calif. 1978), Sect. 39.

 13 S. Weinberg, *Gravitation and Cosmology* (Wiley, New York, 1972).

4M. Camenzind, "Strong and Weak Sources of Gravity—the Structure Degeneracy of the Schwarzschild Space- Time" (to be published) .