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A method is developed which generates a class of nonlinear evolution equations in two
and three spatial dimensions from an associated eigenvalue problem and its time depen-
dence. Special cases include the equations describing nonlinear, resonantly interacting,
wave envelopes in two and three dimensions; a "nonlinear Schrodinger" equation in two
dixnensions; and a two-dimensional analog of the Korteweg- de Uries equation.

The inverse-scattering method is used to analyze the initial-value problem for certain nonlinear ev-
olution equations which describe physically important cases of nonlinear dispersive wave propagation.
The method was discovered by Gardner, Greene, Kruskal, and Miura. "' Zakharov and Shabat' applied
the method to the nonlinear Schrodinger equation using ideas presented by Lax. Ablowitz, Kaup, New-
ell, and Segur developed a technique that generates a class of nonlinear evolution equations that fit in-
to the inverse-scattering method from a general second-order scattering problem. ' ~ ' Zakharov and
Manakov presented a higher-order eigenvalue problem which related to the equations describing a
resonantly interacting triad of wave envelopes.

All of the preceding problems have one spatial dimension. However, recently Dryuma obtained a
scattering problem corresponding to a two- (spatial) dimensional generalization of the Korteweg-de
Vries (KdV) equation. Here, we show that there exist other physically important, multidimensional,
nonlinear evolution equations whose corresponding scattering problem is isospectral (i.e. , whose spec-
trum is invariant in time). As special cases we discuss (i) the two- and three-dimensional, nonlinear,
partial differential equations describing resonantly interacting wave envelopes; (ii) a two-dimensional
"nonlinear Schrodinger" equation; and also (iii) how our procedure yields the result given in Ref. 8.
One can now expect the initial-value solution to a class of multidimensional, nonlinear evolution equa-
tions to be analyzable. The inverse of the scattering problem presented here must still be studied.

Consider the following matrix scattering problem:

0„=igDV+Nv+BV, .
We choose the time dependence of the n-dimensional vector eigenfunction 0 to be

0, = @0+CO,+El„. (2)
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Here f is the eigenvalue and D, N, B, Q, C, and E are nxn matrices. N, , are the "generalized poten-
tials" and we assume N;; =0 and D, , =d; b;, . Equations (1) and (2) are the two-dimensional generaliza-
tion of the eigenvalue problem considered by Ablowitz and Haberman. ' The form of (1) and (2) was sug-
gested by the work of Dryuma. ' %e remark that scattering problems with higher y derivatives than
appear in (1) and (2) will generate other nonlinear evolution equations. In what follows, we shall con-
sider some special cases which result in interesting two-dimensional, nonlinear evolution equations.

The eigenvalues are time invariant if

o=[E,B],
0 = i f[E,D 7 + [c,B]+ [E,N],
O= if[C,D]+[Q,B]+[C,N]+C„-BC,+2EN„

N, = if[Q,D] + [Q, N] +Q„-BQ, + CN, +EN„,

(Sa)

(Sb)

(Sc)

assuming that D, B, and E are constant matrices. Only small modifications of (3a)-(M) are neces-
sary if B, D, and E are not constant. Equations (3) result from cross-differentiation of (1) and (2) by
setting (0„),= (%,)„and equating coefficients of y derivatives of 0. In what follows we shall show, by
three examples, how to solve deductively Eqs. (Sa)-(3d) and find a nonlinear evolution equation from
(Sd). Furthermore, by modification of (1) and (2) we can find both higher-order and three-dimension-
al nonlinear evolution equations.

(i) Nonlinear wave envelop-e interactions (two spatial dimensions). —Let E=O. Equation (Sb) becomes
0=[C,BJ, which may be satisfied by B,, =b; b, ~, C„=c,b... where b, and c; are taken to be constants.
In this case (3c) yields Q, &=a;&N i(i+ j), where n, &=(c;-c,)/(b&-b, ) =o.,;. The diagonal entries of
(3d) allow Q, , to be assumed constant, Q;; =q;. Analyzing the off-diagonal entries of (M) yields a cou-
pled system of nonlinear evolution equations for N, , In order to remove the eigenvalue f present in
these equations, we choose q; —q, = if(d; -d, )n;; hence

N;; g. =n;;N;; „+Pg,N;, ~+ Q (n;» —n»;)N;»N~» (s& y),
k&i, j

where P;, =c, —a;, b; Equati. on (4) represents resonant triads (n=3) or "multitriads" (n&3) if n;, and

p;,. are real and N, » =o,»N», *, where o,.» o„=—cr, , for alii &k & j (see also Ref. 9). For example, when
n =3, (4) becomes the two- (spatial) dimensional three-wave interaction equations. The coefficients
n, , and p;,. are the x and y linear group velocities of the wave envelopes. " Apart from degenerate cas-
es, they may be prescribed arbitrarily. If all o,.&

are negative, then this corresponds to a stable inter-
action. Otherwise we have explosive instability. '

(ii) A two-dimensional nonlinear Schrodinger equation. —Another solution of (3) corresponds to E„
=e, 5„., g„.=-b, 5, , , where b,. and e,. are assumed to be constants. Proceeding as before, a systematic
solution of (Sa)-(Sc) shows C;„=y,,N;,. (i& j), where y, , =(e, —e, )/(b& —b., ) =y, ;, and C, , are constants.
Further

b -b . fb. b y» b-i j j
1

+b b Z (y» y»~)N~»N-»~
i j k&ij

y,.k 2e; —b; y;k
Q), „—b~Q;& ~

= ~ b
'"b (Nl»N»i)~+ b b (Ni»N»~)~

k&i — k i k

By substitution into the off-diagonal entries of (3d), a system of equations for N, , results. When n = 2,
the eigenvalue f is removed by requiring that C;; = 2 i fe, (d, —d,.)/(b, . —b,)and.

lim (Q . . —Q ) = —f'y. .(d —d ) /(b& —b ) (i O j).
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In this manner, we gener'ate (for i g j, n=2),

ei&' —& e,
(b. b )2 1&»

(b b )2 & yyy (b b )2 ij,yy+ (Qii Qj j) i j r
i i j i

where Qkk is the difference between Qkk and its asymptotic limit at infinity,

Qkk Qkk Qkk'
I I ~ lyl-"

Hence Qk„vanishes as I xI, ly I- ~. Letting N» =+ N»*, b, be real, and e; be purely imaginary, we find
a single consistent nonlinear Schrodinger equation in two dimensions. Writing N» =A, (7) becomes

i BA/Bt =D„'A+iyA,

where q&=Q» —@22, and

82 82

(8)

Q;;„—b Q;;, =+ "(AA ) + ' ' "(AA ), (igj, i=1 2).
j i

(9b)

The two-dimensional operator D„ is hyperbolic if e,e2&0, and elliptic if e,e2&0. Equations (8) and
(9b) form a system of nonlinear partial differential equations. If the amplitude A is one-dimensional
(in any direction), then (9b) can be integrated and the system reduces to the standard nonlinear Schro-
dinger equation with cubic nonlinearity.

(iii) A taboo-dimensional KdV equation. —Equations (3) in the 2x 2 case also can yield the equation dis-
cussed by Dryuma. ' The systematic solution of (3) is initiated by letting B» = B» = B22= 0, B» being
assumed constant. Ignoring identity solutions to commutator equations, (3a) yields E =t2B, where we
assume l2 is constant, and (3b) yields C =AN+ i()'2D+o. P, where n is not constant. (3c) is solved by Q
=nN+ifctD+vB+G, where G„=g, b„., g, -g2=n„+t2N» „/p», N»=const. Equation (M) now yields
equations for the potential N». After some manipulation, including the elimination of the g terms, we
find d, = -d„as well as the functions Q. , v, g„and g„and the evolution equation found by Dryuma, '

N ,211(~/ p21N12)( N12 N21 N21 2 N21, yyy p21 N12 f N2l, yy dx (10)

Equation (10) is a two-dimensional equation which reduces to the KdV equation if the problem is inde-
pendent of y. Recently, special solutions to (10) have been found by Chen" using Backlund transforma-
tions.

(iv) Three-dimensional, nonlinear evolution equations. —To generate three-dimensional, nonlinear
evolution equations, (1) and (2) are generalized to

0„=ifDV+KP+BV, +GO, ,

v, =Q0+C it, + FV, +EVE„+HO„+W„. (12)

Again D, N, B, G, Q, C, F, F. , H, and J'are nxn matrices. Equations similar to (3) can be obtained.
However, to be brief, we will discuss only the example of triad resonance which follows from taking
E=H = J'=0 and B,, =b, b, ,-, G;, =g,. b, , , C;, =c; b... and F;,= f, b, ,. The eigenvalues are time invariant
if Q;,. =a;,N„(iw j), wher. e o.;, =(c; —c,)/(b; —b, ) =(f, —f,)/(g, -g, ) =n,;. We find that Q, , —Q, , = g(d,.-d, )n„eliminates g from the evolution equation; hence we find the three-dimensional version of (4),

N;,
~
1=n; N;; „+p;,Ng; +&.;,N;, g+ Q (&;k —&k, )NkNk, ,

%&i,g

(13)

where p;;=c; -c1„b, and e;&=f; -g,. e, &

The above equations are the result of a general method which generates multidimensional, nonlinear
evolution equations appropriate for an inverse-scattering analysis. No assumptions on the & depen-
dence of Q are made. This contrasts with the one-dimensional problems"' in which a different evolu-
tion equation exists corresponding to each assumption on Q. To achieve the generality of the one-di-
mensional case, it is only necessary to modify the y dependence of (1) and (2) [and z dependence in
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(ll) and (12)]. Notice that when E =0 in (2) the evolution equation (4) contains one derivative in y,
whereas if E g 0 two derivatives in y appear in the evolution equation [see (7) and (10)]. Higher deriv-
atives work in a similar way. This is analogous to the role of the dispersion relation in the one-dimen-
sional problem. '

~ote added. —We have become aware that Zakharov and Shabat" have obtained, by a different ap-
proach, the two- (spatial) dimensional three-wave interaction equations and Dryuma's result in Ref. 8.
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A gauge theory for the Lorentz connection of a space-time describes geometries of
stars with variable parametrized post-Newtonian parameter y; its value depends explic-
itly on the structure of a star: The value of y for a neutron star is different from that for
the solar system lip i~- &0 l. Because of the absence of a. "local parity invariance" y
is positive for ordinary stars and y is negative for sources of gravity consisting of anti-
matter.

Several recent Letters' ' present various as-
pects of two-parameter static and spherically
symmetric space-time geometries, generated by
Yang's gravitational field equations B,I, , —A„.,
=0.' The geometric background of these field
equations has partially been discussed by Kilmis-
ter and Newman, ' they have been used by Lich-
nerowicz' in his quantization of the gravitational
field, and they appear in Bel's investigation of
the super-energy-momentum tensor of the grav-
itational field'; the Lagrangian for Yang's equa-
tions has been noted by Eddington' as an alternate
choice for gravitation. The space-time connec-
tions discussed in Refs. 1-3 may be classified by
means of the family of vacuum solutions of the
curvature dynamical equations, " which are the
natural gauge equations of second order for the

connection of the Lorentz-frame bundle of a stat-
ic and spherically symmetric space-time (here
given in terms of Schwarzschild's coordinates,

i g2 r-2(g2 1 )
= —e "fy(A ',f ) + ae r 'Si"', (2)

(3)

f= (e")'b, represents the gravitational force mea-
sured in the static frame of reference; jf"'(r)
and Si'~'(r) are the only nonvanishing components
of the external Lorentz current Zo which couples
matter to geometry. Any static and spherically
symmetric connection which is regular in the
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