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Using a Born-Oppenheimer-type expansion for the two-electron wave functions in hy-
perspherical coordinates, three potential curves are obtained for H 'P states converg-
ing to the n =2 state of the hydrogen atom. It is shown that the Feshbach resonances are
associated with one curve and the shape resonance with another. The connections with
the "+" and "-"classification of helium doubly excited states and with the asymptotic
dipole-field representation of H are discussed.

Various elaborate methods have been employed
to obtain accurate positions and decay widths of
resonances in electron-hydrogen-atom collisions. '
The most careful and thorough study of this sys-
tem is the close-coupling calculations by Burke
and co-workers. ' Besides the numerous Fesh-
bach resonances below the n =2 threshold of H,
they predicted the existence of a narrow shape
resonance of 'P symmetry, with energy only 18
meV above the n =2 threshold. This shape reso-
nance greatly influences the 1s -2s and 1s- 2p

excitation cross sections in electron-hydrogen
scattering' and also the photodetachment cross
section of H near the n =2 threshold. '

As is well known, a shape resonance can be
produced from potential scattering if the poten-
tial possesses a barrier at large distances R
from the force center and is attractive enough at
small R. In electron-hydrogen scattering, the ex-
istence of potential barriers at large R in certain
channels has been known for many years. 4 Be-
cause of the complicated interactions at small R,
however, it has not been possible to get an esti-
mate of the strengths of the potential wells, if
any, at small p, so as to connect the two regions.
In this note, we will show that, by using hyper-
spherical coordinates, it is possible to approxi-
mate the electron-hydrogen scattering by one-di-

mensional (1D) potential scattering. In particular,
for 'P states, three potential curves associated
with the v = 2 state of H are obtained, one being
completely repulsive at all g, one having the
property that it can produce a shape resonance,
and one having the ability to support an infinite
number of Feshbach resonances.

In a recent paper' (to be called I), I have used
hyperspherical coordinates to study the proper-
ties of doubly excited states of helium. In this co-
ordinate system, the distances of the two elec-
trons from the nucleus r, and r, are replaced by
a hyperradius R = (r,'+r, ')'t' and a hyperangle o.

=arctan(r, /r, ). The angle o. , together with the
usual polar coordinates (H„p,) and (H„cp,) of the
two electrons represented collectively as 0=- fa,
H„p, H„cp,), identify the orientation of the elec-
tron pair on a 5D spherical surface, whereas the
coordinate R measures the size of the system.
An interchange of the positions of electrons 1 and
2 amounts to changing cv into —,'w -cv and inter-
changing (H„q&,) and (H„p, ), with R fixed.

Using atomic units and expanding the two-elec-
tron wave function $(R, Q) as

g =R '~ Qq &q(R)cq(R;&),

where R is treated as a parameter in 4„(R;0),
we can reduce the Schrodinger equation for the
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(3)

[d' dR'- v„(R)+ w„„(R)+~]z„(R)+Q„.w„„.(R)&„.(R) =0.
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an e neg ected in the first approximation as is '
n
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i n, as is indeed the case in the cal-
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dff t 1 t. . .l t th

. . . o yo
imi ar o e single-particle radialim' p

' adial Schrodinger equation with otenti I
e electron-hydrogen scattering is thereb re

with potential U& for each channel d
ring is ereby reduced to potential scattering

h 1 1 t d d' tl to th h of th ot t'o e s ape of the potential U&(R) and the behavior of the channel func-

In contrast to the close-cou liup ing formulation, the potential U ~&~ is lo
on the two-electron wave function ~"„~ 0 j'

'
~ is ocal. The symmetry condition

i n ~"„~~, j imposed by the Pauli exclusion
ed in the channel function C (R 0) d th

usion principle is explicitly includ-

with total orbital angular moment L
an e potential curve U (R). In then e actual calculation, for states

men um and total spin S, I expanded

p
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where l and l, are the angular-momentum quan-
tum numbers of the two electrons and 'g»»(j„

is the total orbital angular-momentum wa
unction. The summation over [l,l,] in (3) is not

ordered; i.e. , [E,I,] is not distinguished from
[I,I,). In the calculation for 'P states, the sum-
mation was truncated to include onl [l l ]=[ ]

~j, consistent with the terms con 'd d
in the th

consi ered
e three-state close-coupling c 1 1 ta cu a ions.
this expansion, the amplitudes

at each R satisfy a system of coupled diff
g$~g~p K

tial equations, in which the numb f
eren-

m er o equations
equals the number of terms retained in the ex-
pansion in (3). The eigenvalues V (R) dan ampli-

es g, ,„&(R;n) are solved most conveniently by
finite-difference methods. At larg R—
o.-, it can be shown that these coupled equa-
tions in n coincide with the coupled equat' ~t

r /R in the potential) in the close-coupling
formulation. Thus, the potential U„(R) and chan-
nel function C&(R;0) coincide with those in the
dipole representation of Gailitis and D bam urg
a arge Fi'. . The results of their large-R analysis
are then applicable. Howeve th
proach the potential and channel function are de-
ined throughout the whole range of B. Th

use of h eryperspherical coordinates provides a con-
nection in the study of the properties of two-elec-
tron systems throughout the whole range of P.

The three potential curves U„(R) (atomic units
are used throughout unless oth erwise given) con-
verging to the n = 2 state of H are shown F' . 1wn in ig.
w ere the curves labeled "+"and "-" '

th—' in xhe re-

di
gion 12.5&& &14.5 are obtained b ty in erpolating

iabatically. It is shown in I that the + series is
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FJQ. 1. Potentials fos for H P channels converging to
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i associated with an antinode near cv =45 and the
—series is associated with a node near n = 45
iii gipp (R Q ) of Eq. (3). In order to mainta'
smoothl

main ain a
othly varying channel function IjI&(R;0) so as

to avoid large coupling terms 8' ~ in E . 2
+ and —curv+ an —curves in Fig. 1 are found to cross atg
= 13.5, thus preserving their + or —characters
throughout the whole range of B. This crossing

a sing e-par-can also be understood in terms of 1

ticle model, as is to be discussed later.
In Fig. 1, the curve denoted"-" ha hs a shallow

and broad m'inimum which behaves asymptotical-
ly as —3.71/R' at large R below the n =2 thre h-

. This potential can support a 'nf t
res-

n i ini e number
of Feshbach resonances, the first two of which
are calculated to be —0.25191 and —0 2500

y solving the eigenvalues from the —curve
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The values agree well with the variational re-
sults, —0.25193 and —0.25003 By, of O' Malley
and Geltman, ' indicating that for Feshbach reso-
nances the neglect of the coupling term is a good
first approximation. The curve denoted by "+"
is more attractive at small B than the —curve,
but it has a potential barrier with height 4.8x 10 '
By and behaves asymptotically as 2/R' above the
n =2 threshold. The potential well is not attrac-
tive enough to support a bound state below the n
=2 threshold but may be strong enough to support
a shape resonance above the n = 2 threshold. To
see that this is indeed so, one can integrate the
equation in R numerically with the + potential to
find the phase shifts. These phase shifts are
plotted versus energy above the v = 2 threshold
in Fig. 2(a) where a fast variation of phase shifts
with energy cari be observed. These resonances
features can also be identified in Fig. 2(b) where
plots of E&(R) show localized resonance behavior
near & = 12 as resonance energy is approached.
From the computed phase shifts, the resonance
position E„and width I' are found to be 32 and
28 meV, respectively. These values are greater
than the values E„=18 meV and 1"= 15 meV ob-
tained by the three-state close-coupling calcula-
tion with twenty correlation terms, but are more
accurate than the three-state close-coupling cal-
culations without correlation. '

The third curve denoted by "pd" is completely
repulsive and behaves asymptotically as 9.71/R'.
The channel function for this curve has a large
component of [l„l,] = [2, 1j, and may be denoted
as "Pd." This channel has the most repulsive po-
tential among the three curves and will not con-
tribute significantly to any excitation processes
near the n = 2 threshold.

Since the excitation processes occur at small
R (R =4), from Fig. 1 it is evident that the main
contribution to the excitation cross sections
comes from the + channel, with little from the
other two. However, because of the presence of
the potential barrier, the + channel is not open
until the barrier can be penetrated. In this nar-
row energy region, only the —channel is open,
i.e. , the one which can support an infinite num-
ber of bound states. It has been shown that such
a channel will have finite excitation cross sec-
tions (1s- 2s and ls —2p) at the threshold. '" In
the 'I' states studied here, however, this thresh-
old law only has a very limited range of applica-
bility because the + channel will dominate the ex-
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FIG. 2. (a) Computed phase shifts for the + channel.
(b) Radial wave functions E(R) at various energies in
units of 10 Ry, showing the behavior of resonance,
These continuum wave functions are normalized per
unit energy, with energies expressed in atomic units.

citation processes wit&in a few meV.
The crossing between the taro curves in Fig. 1

can also be expected in terms of the independent
particle model. I have denoted these two curves
by "+"and "-," implying a close resemblance to
the + and —series classification introduced by
Cooper, Fano, and Prats' in the interpretation
of the photoionization data of helium doubly ex-
cited states. ' They show that the observed broad
series corresponds to the in-phase coherent os-
cillation of the radial motion of the two electrons
which can be denoted simply as 2snp+2pns and
the narrow series which can be denoted as 2snp
—2pns. The crossing between the + and —curves
results from the difference in the types of corre-
lation effect implied in the combinations 2snp
+ 2pns in the region of small R and of large R.

Let 2snp "'P denote a single Sister determinant
as constructed from single-particle orbitals;
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then

(2snp + 2pns)' ~P = [2s(r,)np(r2) p»»+ (- 1)s2s(r~)np(r, ) g», o]

+ [2p(r, )ns(r, )'1J», + (- 1)s2p(r )ns(r, )g „o]
=[2s(r,)np(r, ) + (- 1) 2p(r, )ns(r, )]'g»»

+ [2p(r, )ns(r2) + (- 1)s2s(r2)np(r, )]'g»», (4)

where S is 0 and i for singlet and triplet, respec-
tively, and nl(r, ) denotes the radial wave func-
tions. As emphasized above, the + or —series of .

Ref. 8 implies the sign within each of the square
brackets of Eq. (4). Therefore, 2snp+2pns is a,

+ series and 2snp —2pns is a —series for 'P at
small g. The potential curve associated with
(2snp —2pns)'P lies higher than that associated
with (2snp +2pns)'P as a result of the existence
of an extra node near o. =45 . On the other hand,
at large R (or large r,), the exchange effect is
not important and the terms with the factor (- 1)s
in Eq. (4) can be neglected. It can be shown that
in the asymptotic region, the potential associat-
ed with 2snp+2pns lies higher than that associat-
ed with 2snp —2pns, independent of 'P or 'P.
Thus, for 'P, the + curve lies lower at small g
but higher at large R as compared with the-
curve, resulting in a crossing between the + and
—curves. On the other hand, since (2snp+2pns)'P
is a —series at small R [because of the factor
(-1)s, 8=1], it lies above the (2snp —2pns)'P
series (the + series) at all g and no curve cross-
ing is expected between them, as evidenced by
actual calculation. "

It is interesting to note that the lowest Fesh-
bach resonance of 'P symmetry in H" cannot be
designated as 2s2p 'P, so that the lowest doubly
excited states cannot always be constructed from
the allowed lowest combinations of single-parti-
cle states. This also explains why the 2s2p 'P
state of H was not found in the accurate 1/Z ex-
pansion calculation of Drake and Dalgarno"; in
other isoelectric sequences of helium the 2s2p 'P '

is the lowest Feshbach resonance, but in H" this
state becomes a shape resonance. The lowest
Feshbach resonance in this case should be des-
ignated as (2s3p —2p3s)'P. Its radius is peaked
at R = 30, in contrast to the shape resonance in
Fig. 2(b) which is peaked near 8 = 12.
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