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We propose a description of collective quadrupole states in even-even nuclei in terms
of representations of a boson SU{6}group. We show that within this model both the vi-
brational and the rotational limit can be recovered.

The purpose of this note is to point out that the
group SU(6) of six-dimensional special unitary
transformations might provide the appropriate
framework for a unified description of collective
nuclear states. Restricting ourselves to even-
even nuclei we observe that the main features of
the collective nuclear motion are (i) the quadru-
pole (L = 2) character of the excitations, and
(ii) the near equality of the vibrational and rota-
tional frequencies which does not allow a clear-
cut distinction between the two different types of
motion. An additional and important difference
from other many-body systems is the limited
number of particles available in each sef-con-
sistent shell which introduces a cutoff in the vi-

brational and rotational bands.
To illustrate the usefulness of the SU(6) group

in classifying the variety of observed spectra we
construct a specific model which (i) has the prop-
erties mentioned above, (ii) can be shown to have
analytic solutions corresponding to the vibration-
al and rotational limits, and (iii) reproduces, af-
ter slight rearrangement, the Hamiltonian de-
rived by Janssen, Jolos, and Donau, 'using the
Lie algebra of pair operators. The algebraic
structure of this model was first discussed by
Arima' who pointed out the existence of the two
limits, to be described below, and by Taruishi'
who numerically investigated the vibrational-ro-
tational transition. In addition to suggesting a

1069



VOLUME $5, NUMBER 16 PHYSICAL REVIEW LETTERS 20 OCTOBER 1.975

wider range of applicability of the model, we
stress here (i) the presence of approximately un-
broken symmetries for which there seems to be
compounding experimental evidence, and (ii) the
large set of analytic relations which can be de-
rived in these limiting situations using standard
group-theoretical methods' ' and which are the
new and most useful aspect of the SU(6) boson
group approach.

To begin with, we claim that a number of posi-
tive-parity states can be generated in even-even
nuclei as states of a system of 1V bosons having
no intrinsic spin but able to occupy two levels,
a ground-state level with angular momentum L
=0, and an excited state with angular momentum
L= 2. In the case in which the two levels are
degenerate and there is no interaction between
bosons, the five components of the excited L = 2

state, called d for convenience, and the single
component of the ground L =0 state, called s,

span a six-dimensional vector space which pro-
vides the basis for the representations of the uni-
tary group U(6). Disregarding phase transforma-
tions we can reduce U(6) to the unitary unimodu-
»r g~o~p SU(6). The representations of SU(6)
are characterized by the symmetry properties of
the wave function. For bosons the only allowed
representations are the totally symmetric ones,
belonging to the partition [N] of SU(6). In the ab-
sence of interaction and for zero splitting be-
tween s and d levels, all states belonging to [N]
are degenerate. The residual interaction between
bosons and the energy difference e = e„—&, split
the degeneracy and give rise to a definite spec-
trum. The spectrum is defined by e, by the sev-
en two-body matrix elements (O'I. IVld'L, ) (I.= 0, 2,
4), (d'OIVls'0), (ds2IVids2), (ds21Vld'2), (s'OIV
xls'0), and by the partition [N] of SU(6) to which
it belongs, nine parameters in all. The energy
levels can be found by diagonalizing the model
Hamiltonian

H =end ~d + Q ( d2LVIIdL)[(d~dt)~ «(dd)» »]& «+(ds2IVld 2)[(dtdt)~2»(ds)I «+(dtst)~'«(dd)&2«]» »

I =Og2y4

+(d'OIVls 0)[(dtdt)~ «(ss) '»+(sist)~o«(dd)~o»]&o«

+(ds2IVlds2)[(d st) ' (ds) ' ] ' +(s'OIVls'OIVls'0)[(sist)~' (ss) ' ] ' .

Here d~ (d) and st (s) are the creation (annihilation) operators for bosons in the L = 2 and L = 0 state,
the zero of the energy has been chosen in such a way that c,= 0, and the parentheses denote angular
momentum couplings. To the extent that Eq. (1) describes collective states there are associated tran-
sition operators. The quadrupole operator is defined in terms of the two reduced matrix elements
(dllQlid) and (d IIQlls) and given by

T =(dllQlls)[(dts) «+(std) ~' ]+(dllQlld)[(de) ~'«]

It is worthwhile mentioning at this stage that the Hamiltonian of Eq. (1) is equivalent to that derived by
Janssen, Jolos, and Donau. ' In fact within the basis states Is "&d"&[N]ELM), where y is whatever
quantum number is needed to specify uniquely the states, the s and s operators can be replaced by c-
number functions of n„:

H = en, ++~(d'LIVld'L)[(dtdt)' «(dd)' «]"»

+(ds2IVld'2)([(dtdt) 2«d](o«(N —ng't'+(N —n +1)U2[d~(dd)&2»l

+ (d'OIV I s20)j[d td ~]~ »2[(N —n~)(N —n~ —1)]'~'+ 2[(N —n~+ 1)(N —n~+ 2)]U [dd]~o«)

+ (ds2IVI ds2)(N —n~)n~/E5 + (s'OIVI s'0) ,'(N —n~)(N ——nd —1),

yielding, after a slight redefinition of the param-
eters, the Hamiltonian of Ref. 1.

We now show that for different choices of the
parameters e, . . . , the Hamiltonian and transi-
tion operator of Eqs. (1) and (2) produce both vi-
brational- and rotational-like spectra. As these
parameters change„ the SU(6) model spans the
entire variety of observed spectra. We begin by
considering the case in which the energy e is

i much larger than all interaction terms in Eq. (1).
In that case the Hamiltonian is invariant under
separate transformations among the five compo-
nents of the L = 2 state. Thus the states are char-
acterized by the number of bosons occupying the
L = 2 level, n~, and an (approximately) unbroken
SU(5) symmetry emerges from the decomposition
SU(6) &SU(5) SU(1). The quantum number n, =N
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-n„plays no role in this case. The representa-
tions of SU(5) contained in [N] are all the symme-
tric representations [n~= 0], [n„= 1], [n„= 2], up
to [n„=N]. We have discussed previously' the
quantum numbers which are needed to specify
uniquely these states through the decomposition
SU(5) DO'(5) ZO'(3). In this limit the wave func-
tions are labeled by I [N] [n„]vnnLM) and the ener-
gy spectrum is given by

(4)

This is a vibrational spectrum cut off at n„=N. In
Ref. 6 we have shown that the SU(5) DO'(5) sym-
metry is preserved even if we introduce the two-
body interaction terms (d'LIV~d'L)(L =0, 2, 4), in
the sense that the different representations of
SU(5) are split but not admixed by these terms.

The other limiting situation occurs when the en-
ergy & is small and of the same order of magni-
tude of the two-body matrix elements. In particu-
lar if both the splitting c and the two-body matrix
elements correspond to those of a quadrupole-
quadrupole interaction in a major oscillator shell
V= —zQ;, Q, Q,, where z is the strength of the
interaction and Q; the quadrupole operator of the
ith boson, another approximate symmetry oc-
curs. 4 The related wave functions serve now as
a representation space for the groups SU(6)
&SU(3)~ 0'(3), and they are characterized by

the quantum numbers 1[N](X,p)KLM), where (X,
p) label the representations of SU(3) belonging to
the partition [N] of SU(6). Since [N] is totally
symmetric the decomposition SU(6) D SU(3) D 0'(3)
is easy to carry out. 4 In this limit the energy
levels are given by

E([N](A,, p)KLM) = 9z (5)

where C is the Casimir operator of SU(3), C(A., p)
=A.'+ p, '+A, p, +3(A. + p). For the symmetric repre-
sentations, C(A., p) is only a function of ¹ Thus
the entire spectrum is given in terms of the sin-
gle parameter z and of the partition [N] of SU(6).
The spectrum of Eq. (5) is shown in Fig. 1 for
N = 8. It is a rotational spectrum cut off at L = 21V,

The P, y, and higher bands appear here in a nat-
ural way as representations of the boson SU(3)
group. A survey of the available data appears to
indicate that there is a large number of rotation-
al-like nuclei whose spectrum is approximated
by the boson SU(3) spectrum of Eq. (5). An ex-
ample is shown in Fig. 2. Others can be found in
the neighboring nuclei as well as in deformed nu-
clex xn the Dy and W re~,ons.

Quadrupole transitions can be calculated by tak-
ing matrix elements of the operator of Eq. (2) be-
tween eigenstates of the Hamiltonian Eq. (1). In
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FlG. 1. Decomposition of the representation [S] of SU(6) in representations (X,p) of SU(S). The orthogonal basis
of Vergados, Ref. 5, is used in the decomposition of SU(B) & 0+(g).
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(5), as a basis for a perturbative treatment. For
exa, mple, a small breaking of the SU(3) symmetry
yields for the ground-state band

([N](2N, 0)LMIHI[N](2N, 0)LM)

=A + BL(L + 1) + CL'(L + 1)'. (6)
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the two limiting situations these matrix elements
are easily constructed. Since we have already
discussed the vibrational case' we consider here
only the rotational limit. Again if the two re-
duced matrix elements in Eq. (2) correspond to
those of the quadrupole operator in a major har-
monic oscillator shell Q=o.+,Q, the resulting
T ' is an operator of SU(3). Thus matrix ele-
ments between states of different representations
(X, p) of SU(3) vanish and those between states of
a given representation depend on the strength z
and on the quantum numbers which label the rep-
resentation. Formulas for these matrix elements
can be derived using the methods described by
Elliott. 4

It is interesting to note that the quadrupole
transitions between y and P bands although re-
tarded are not completely forbidden in the SU(3)
limit. This is because both P and y bands belong
to the same representation (2N —4, 2) of SU(3).
As a consequence the ratio B(E2 2&-Os)/B(E22&
-0 ) is expected to be large, since the transition
2&-0 is strictly forbidden in the SU(3) limit.
There is some evidence that this might be the
case. '

In any event we believe that a description of
collective states in terms of a SU(6) model might
be appropriate, especially in the two limiting sit-
uations in which the approximate symmetries
0'(5) and SU(3) occur. For nuclei whose spec-
trum is not too far from these exact symmetries
it might be useful to use the respective unper-
turbed wave functions and energies, Eqs. (4) and

FIG. 2. Low-lying positive-parity bands in 2~4U. The
experimental energies are from the Nuclear Data Sheets.

We have obtained analytic expressions for the co-
efficients A. , B, and C in terms of & and of the
two-body matrix elements V~ = ([2](4,0)LI &I [2](4,
0)I.). We have also derived similar analytic re-
lations for other bands, as well as for transition
rates, in either case of an approximate 0' (5)
or SU(3) symmetry, and we will present them in
a forthcoming longer paper. For the other, tran-
sitional, nuclei a diagonalization of Eq. (1) may
be needed, although it is not excluded that other
subgroups of SU(6) can be found which correspond
to some other typical situation.

Finally we point out that a Hamiltonian similar
to Eq. (1) has been derived by Kerman and Koon-
in' using the time-dependent Hartree- Fock ap-
proach. The transition from vibrational to rota-
tional nuclei has also been studied by Moszkow-
ski' in a two-dimensional version of Eq. (1).
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