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Observation of the Phase Shift of a Neutron Due to Precession in a Magnetic Field»'
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We have directly observed the sign reversal of the wave function of a ferm. ion produced

by its precession of 2& radians in a magnetic field using a neutron interferometer.

It is well known that the operator for rotation
through 2m radians for a fermion causes a rever-
sal of the sign of the wave function. We have di-
rectly observed this effect for neutrons precess-
ing in a magnetic field using an interferometer
of the type first developed for x rays by Bonse
and Hart. ' This experiment was first suggested
by Bernstein2 in 1967. At nearly the same time
the possibility of observing this effect was noted
by Aharonov and Susskind' and a tunneling experi-
ment using electrons was proposed.

The interferometer, He' detectors, and periph-
eral apparatus employed in this experiment are
the same as those used in the recent observation
of gravitationally induced quantum interference. 4

A monoenergetic, unpolarized neutron beam (h
=1.445 A) is split at point A of the interferome-
ter by Bragg reflection (Fig. 1). The one beam
passes through a transverse dc magnetic field on
the path AC. The relative phase of the two beams
where they recombine and interfere at point D is
varied by adjusting the magnetic field B.

If we take the Hamiltonian for the neutron of

P =+ 2'„p~MXBl /h'. (2)

Here the + signs are for spin-up and spin-down
neutrons; g„ is the neutron magnetic moment in
nuclear magnetons (=-1.91), ttN is the nuclear
magneton, h is Planck's constant, M is the neu-
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FIG. 1. A schematic diagram of the neutron inter-
ferometer. On the path AC the neutrons are in a mag-.

netic field J3 (0 to 500 G) for a distance l (2 cm).

momentum p and magnetic moment p to be

II =P'/2M —p,'B,
it is easy to show that the phase shift to first or-
der in B is
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I, =I,(0)+I,(k)

= 2 n[1 + cos(5 + P)] + z n [1 + cos(6 —P)]

=n[1+cos5 cosP]. (4)

In these expressions we have taken P to be de-
fined by Eq. (2) with the plus sign. The constants
e and y are the same instrumental parameters
of Ref. 4. Thus, if the residual phase & is fortui-
tously m!2, Sm/2, . . . , there will be no observ-
able effect of the magnetic field on the intensi-
ties. ' We circumvent this problem by first ro-
tating the interferometer about the incident beam
AB, thus using the effect of gravity to set the
phase at a minimum of I2-I, which insures that
5=0, 2m, . . . . The major problem in this experi-
ment was finding a method for producing a vari-
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tron mass, and l is the distance over which the
neutron is in the magnetic field.

We must add the contributions of spin-up and
spin-down neutrons together since the experiment
was done with unpolarized neutrons. There is al-
ways a residual phase shift 6 in the interferome-
ter due to various causes, including gravity. The
counting rates at detectors C, and C, are expect-
ed to be

I, =I,(S) +I, (&)

= [2y —z n cos(& + p)]+ [~zy —an cos(& —p)]

=y —n cosbcosp,

B/ = 272/A, , (5)

where B is in gauss, l in centimeters, X in ang-
stroms. It is clear that the leakage field from
the magnet must be included in a comparison of
experiment with theory. We have experimentally
determined B with a small magnetic field probe
along the two beam paths ABD and ACD. The ef-
fective Bl for our magnet and interferometer is

(ai) =2.7S„,(G cm), (6)

where Bgzp is the magnetic field in the magnet
air gap.

Our first results are shown in Fig. 3. The os-
cillation period is 62+2 G. Thus,

(Il/) = 242/X. (7)

The agreement of this result is within the experi-
mental errors which we are willing to assign to
the measurement of the effective B/.

It is clear that we have observed the complete
rotation symmetry demanded by the spinor char-
acter of the neutron wave function. In classical
physics 2@m rotations are unobservable. It should
also be noted that in a superconducting quantum
interference experiment this effect is not observ-

able magnetic field ( 0 to 500 G) of uniform in-
tensity over the beam dimensions (2 mm&& 10 mm)
in a limited space, which does not disturb the in-
terferometer by heating, or in any other way.
Our solution to this problem was to construct a
small magnet using two cobalt-samarium perma-
nent magnets, one of which has a variable posi-
tion as shown in Fig. 2.

Equation (2) predicts that the field required for
a precession of 4m (complete period) is
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FIG. 2. Diagram of the magnet used in this experi-
ment.

FIG. 3. The difference count, I2-I3, as a function of
the magnetic field in the magnet air gap in gauss. Ap-
proximate counting time was 40 min per point.
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able because the charge carriers are bosons.
This experiment was carried out at the Ford

Nuclear Reactor, University of Michigan. The
technical assistance of B. Poindexter is grate-
fully acknowledged.
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A calculation is made of the energy levels of the bound states of a strange quark and its
antiquark with an interaction which includes an attractive Coulomb potential term, a con-
fining linear potential, and spin-orbit, quadratic-orbit, spin-spin, and quadratic-spin
interactions. Good agreement is obtained with observed mesons, and the existence of
other mesons is predicted.

Within the framework of the quark model, we
regard the y meson as the lowest 'S, bound state
of a strange quark s and its antiquark s, and the
g' meson as the lowest 'S, bound state of this sys-
tem. Other mesons are known which can be in-
terpreted, as we shall see, as excited ss states.
We shall consider the spectrum of ss bound states
using a rough analogy with the states of positroni-
um. Specifica11y, we assume that the s and s
quarks are subject to an attractive Coulomb-like
potential, a short-range interaction effective in
S states only, a spin-orbit interaction, and an
interaction which goes like the square of the or-
bital angular momentum I . We depart from the
positronium analogy by omitting still other terms
present in the electron-positron interaction (like
the tensor force) and by including a linear poten-
tial which confines the quarks.

Linear and/or Coulomb-like potentials have
been used previously by a number of authors' '
to describe bound states of a charmed quark and
its antiquark. Gunion and Willey have consid-
ered the spectrum of mesons made of ss quarks
(and the spectrum of other hadrons) using a lin-
ear confining potential with spin-spin and spin-

orbit interactions but without a Coulomb-like po-
tential. De Bujula, Georgi, and Glashow' have
considered the hadron spectrum in perturbation
theory using Coulomb-like forces. The paper of
De Bujula, Georgi, and Glashow contains a good
discussion of the theoretical justification of Cou-
lomb-like models.

Our treatment of the ss interaction differs from
those given in previous works in two important
ways. First, although we solve an ordinary Schro-
dinger equation, we partially include the effects
of relativity by using relativistic kinematics.
Second, we include terms present in the positro-
nium interaction which have been omitted previ-
ously except as perturbations. It turns out that
the ss coupling strength is sufficiently large that
a perturbation treatment and the use of nonrela-
tivistic kinematics are both inadequate approxi-
mations. In particular, although we obtain good
agreement with experiment in our model, we can-
not obtain this agreement if we evaluate the ef-
fect of the spin-orbit potential in perturbation the-
ory.

The interaction II' responsible for the fine-
structure splitting in positronium is given by'


