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A new class of exact standing-wave solutions of the Maxwell cold-plasma equations
with fixed ions is described. The waves are transverse, and circularly polarized.
These solutions permit an analytical treatment of intense wave penetration into inhomo-

geneous plasmas with fixed ions.

Analytical investigations of the propagation of
very intense electromagnetic radiation in over-
dense plasmas (w,> w) customarily begin with
the “exact” traveling-wave solutions of Akhiezer
and Polovin.'”® These solutions, which satisfy
Maxwell’s equations and the relativistic electron
equation of motion for fixed ions, are suitable
only for the treatment of moderately inhomogen-
eous plasmas in which reflection is negligible.?
In the extreme case of total reflection, a nor-
mally incident wave in a stratified medium must
resemble more a standing wave than a traveling
wave. We have found that exact standing-wave
solutions, similar to the Akhiezer-Polovin solu-
tions, exist in both homogeneous and inhomogen-
eous cold plasmas, and that they may be written
down in closed form for the homogeneous case.
These solutions lead to analytical expressions
for the reflection point of circularly polarized
standing waves in plasmas of arbitrary (mono-
tonically increasing) ion density variation. While
extremely interesting for the insight they give
into the reflection of intense waves, the solutions
imply a redistribution of electron density which
must exert great forces on the ions, rendering
the approximation of immobile ions unrealistic.
Nevertheless, the maximum penetration of a
pulse into a plasma boundary depends upon the
electron response during the initial formation of
the standing wave, before the ions can move far.
Thus if one must choose a steady-state solution
which leads to a plausible criterion for the pene-
tration depth of reflected waves, the solution
with fixed ions is preferable. The steady-state
solution for standing waves with movable ions ‘
leads to bunching of the plasma at the nodes of
the electric field.*:® At zero temperature, there
is no restriction on the field strength or pene-
tration depth in this case. A good picture of
plasma bunching in nearly standing waves of lin-
ear polarization has been obtained numerically
by Valeo and Estabrook for warm plasmas.* The

field strengths employed in their work are at
least an order of magnitude less than those for
which the effects considered here are important.
Nevertheless their conclusion that the resulting
thin sheets of plasma are unstable against trans-
verse bubble-type instabilities at finite tempera-
ture will certainly apply here as well.

Our starting equations are those of Akhiezer
and Polovin,

-

vxB =(@n/cnev +(1/c)oE/ot, v-B=0,

v ﬁ=41re(n-no), vxE=- (l/c)aﬁ/at,

0p/ot+ (v - V)p=eE+(e/c)¥xB), 1)
where p=mv/(1-v?/c?)?, and the independent
variables are z and ¢. The ion density n,(z) is
assumed stationary. In a standing wave, the
components of the fields and electron density
are required to have the factored form E,(z, ¢)
=F,(2)f,(¢), etc. This very strong condition has
the following consequences for inhomogeneous
plasmas: (1) The wave must be circularly polar-
ized. (2) The longitudinal momentum b, must
vanish. The detailed proof of these statements
will be reported elsewhere. The important con-
clusion is that the transverse components of E
and B may be derived from a vector potential A
of the form

eA/mc?=F(wz/c)(- & coswt +§ sinwt), (2)

with p=—eA/c. The longitudinal field is given by
a time-independent scalar potential &(z) = (mc?/
e)o(wz/c). These expressions when inserted in-
to Egs. (1) yield

@' ==d(1+F)"?/dg ®)
=" =(w," = w,")/ @)
F"+F=(w,?/w*)F/(1+F?)"2, (5)

where ¢ =wz/c, w,®>=4mne’/m, w,,’=4mne’/m,
and primes denote d/d¢.
Eliminating ¢ and w,/w from (5), one finds an
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equation for F with the following properties: F
may be regarded as the displacement of a classi-
cal particle whose variation with “time” ¢ is de-
scribed by the Lagrangian

L=3F"/(1+F?) -L1F%4+a(l+F?)/? (6)

where o =w,,’°/w® may be a function of ¢. This
Lagrangian may be derived from the Lagrangian
density for the zero-temperature relativistic-
electron fluid plus electromagnetic fields and
fixed ions

£=(E?-B%)/8n
+nl=mc2(1 =02/ 2 vev - A/c] + (ny—n)ed

by substituting the appropriate expressions for A,
®, and p, and using (3)-(5). The associated
Hamiltonian H =P?/2M(F) + V(F) [with M(F)=(1
+F?)Y V(F)=3F? = a(1+F%)? P=M(F)F'] is a
constant of the motion when the ion density is
homogeneous.

Equations (3) and (4) show that the electron
density can vanish when

d*(1+F?)"?/dg?< - a. (7)

Where there are no electrons, the Lagrangian
reduces to its vacuum form for standing waves,
2L,=F"~F®?, The electron density function
must be obtained from (3) and (4) and the condi-
tion of charge neutrality f (o, = @)dt =0, where
@,=w,?/w?. The integral here need only cover
a spatial quarter period ¢, in the homogeneous
case. In this case, the value F, of the field at
the boundary between depleted and nondepleted

1.8

FIG. 1. Fields B (F') versus transverse E (F) in units
muwc/e for a quarter period when w,oz/ W= =. The de-
pletion region where there are no electrons is shaded.
Curve A corresponds to Fig. 3.
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regions may be found by combining the charge-
neutrality condition with the boundary condition
which matches the logarithmic derivatives of the
solution in the two regions at the depletion bound-
ary. The resulting implicit equation may be
written

G 'tanG = a(1 +F,%)'2/F 2, (8)

where G*=2(F,/a)’[H - V(F,)]. Once F, is found
the depletion boundary may be determined from
the explicit form of the solution in the undepleted
region, given below.

For homogeneous ion density, the potential
V(F) has a single minimum for @< 1, and a dou-
ble well for o> 1 (the overdense case). Figure 1
shows plots of F’ versus F (or B versus trans-~
verse E) for a=%, which imply three kinds of
motion for F when a>1: (1) oscillations about
zero when the maximum field F,, exceeds F,
=2(a® - a)"?; (2) oscillations about a bias field
Fy=(a?-1)"2 when F, < F,; (3) motion with in-
finite period along the separatrix F, =F,. These
formulas are easy to obtain from the expression
for H. It is also easy to find from (7) the great-
est maximum field F,, =F, for which no electron
depletion occurs. As F approaches F, from be-
low, a, given by (4) must approach zero. This
gives

Fo={(a/2)[a+(4+a?) 2]}, 9)

Figure 2 shows F, and F, versus a. Also shown

2
a= wso/w

FIG. 2. Maximum field amplitude F,, characterizing
solutions in nondepleted regions versus ion density in
units mw2/41re2. Dots correspond to curves in Fig. 1.
Open circles are fields at turning point corresponding
to vacuum field strength ¥ indicated from Eq. (13). Re~
gion where depletion occurs is shaded.
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is the curve F, =F,=2(a®+a)"?, for which the
solution F(¢) has a simple form given below. Be-
cause the solutions are awkward to work with
when depletion occurs, we shall limit our atten-
tion to the region F, < F,. This implies F,, <V3
if we omit consideration of the biased oscilla-
tions of case (2) above. For 1-um radiation, a
case of experimental interest, this limit implies
peak fields in the plasma less than V3mwc/e
=~1.86x10° esu, or power densities ~4x10'® W/
ecm?,

The equations for F may be integrated explicit-
ly in terms of Jacobian elliptic functions for all
field strengths. When F, <F, <F, the quarter
period is ¢, =y 'K(m), where K is the complete
elliptic integral of the first kind, and the field
amplitude is

F(¢)=2F,cn(yg) /[2+ (€, - 1) sn?(y¢)] (10)

where €,°=1+F, ° y’=¢, ~a. The parameter m

of the elliptic functions is m = (¢, = 1)2a+1-¢,)/
4(e, — ). When F, =F,, m=0,

F(g)=F,cos(y't)/[1+asin’(y'¢)], (11)

where y?=a+1. For the important nonperiodic
limit F, =F,, m=1,

F(¢)=F pcosh(y "¢)/[1+asinh?®(y"¢)], (12)

where y”?=a -1. The formulas for F,<F, are
somewhat more complicated and will be given
elsewhere. These solutions are necessary for
the evaluation of the boundaries of the depletion
region from Eq. (8), indicated on Fig. 1 for the
case a=%. The F’ versus F trajectories in this
region are segments of ellipses. Figure 3 shows

[¢] r; 4 1 c 1.'5 ;

FIG. 3. F: transverse electric field versus ¢ =wz/c
over a quarter period. This corresponds to curve 4 in
Fig. 1. wy?/w?: electron density. wy?/w?’: ion density.
The areas under these two curves are equal to satisfy
‘charge neutrality.

°p

F and the electron density a, for trajectory A of
Fig. 1.

The most interesting application of these solu-
tions is in estimating the properties of standing
waves in inhomogeneous plasmas, For this pur-
pose, it is useful to have the integral invariant
I=¢$PdF which is nearly independent of ¢ when
a(¢), the ion density, is not constant. The phase
integral may include contributions from both the
depleted and undepleted regions, and the appro-
priate canonical momenta must be employed for
each region, Although the canonical momentum
is discontinuous across the depletion boundary, I
is still a continuous function of F,, and o, and re-
mains an invariant, The usual arguments® for in-
variance of the phase integral can be applied to
the sum of contributions from the depleted and
undepleted regions. I can be evaluated in terms
of elliptic integrals for all field strengths, but
the case F, =F is particularly important, since
this is the turning point in the sense that the spa-
tial quarter period &, becomes infinite there, and
unbiased oscillations are forbidden for smaller
fields or higher densities. To find an explicit
formula for the vacuum field strength F, required
for a turning point at a(Z), we set the adiabatic
invariant at the turning point I, equal to the invar-
iant I, for vacuum propagation with amplitude F:

I,=1F2=1.=8a0-8(a-1)"? (13)

where sin?0=(a ~ 1)/a. This procedure accounts
well for the increasing amplitude of the wave as
it approaches the turning point, and is similar to

0.8 T T T T T T T 1
o 02 04 06 08 1.0 1.2 1.4 1.6 1.8
Fo. Fr

FIG. 4. Ion density at turning point versus (1) inci-
dent vacuum field F, from Eq. (13); (2) field in medium
Fp; (3) least maximum field in medium for circularly
polarized traveling waves, from Ref. 1. The dashed
line indicates depletion near turning point, where Eq.
(13) is incorrect.
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the WKB approximation for linear waves., In con-
trast with the linear case, the amplitude estimat-
ed this way remains finite at the turning point,
and is indicated on Fig. 2 for a few incident fields.
Figure 4 shows the ion density at the turning
point as a function of éncident field strength, from
(13). The corresponding ion density versus the
maximum field at the turning point Fp=2(o?
- a)¥? ig also shown, This curve may be com-
pared with the condition of Akhiezer and Polo-
vin®2 for the existence of circularly polarized
traveling waves in a uniform overdense medium,
F=(a?-1)¥2, A more interesting condition, F,
2 (a/Z)Y? derived by Max and Perkins® for prop-
agation of very strong waves in a nonuniform me-
dium, depends on the scale length of the plasma
Z =(dlno/dt) "'=wL/c, and could therefore be
plotted on Fig. 4 only for a definite choice of
scale length. In any case, this condition applies
to fields F,>1 for which (13) must be altered be-
cause of depletion effects near the turning point.
At the field strengths we have been considering,
thermal effects are negligible unless the electron
thermal velocity v, approaches the speed of light.

A value of v, typically employed in laser-induced-
plasma simulations? is ¢/10. Much more serious
than neglecting the temperature is our assump-
tion of fixed ions. The ion density is known to
bunch at the nodes of the field after the standing
wave is formed. The extent to which the tran-
sient evolution of these striations alters our pre-
dictions of penetration depth cannot be investigat-
ed in the context of our solutions.
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From the intensity and Rayleigh linewidth of light scattered by the system Ne-Kr near
the temperature minimum of the critical line (double plait point), we have verified the
phenomenological rule that, for constant overall composition, the critical exponents are
independent of the path of approach to the critical line, except along a path which is as-
ymptotically parallel to the critical line where they assume twice their usual values.

Phase diagrams of binary systems show a
variety of behavior.! Among them, fluid-fluid
equilibria of the second type are of special inter-
est: Their critical line passes through a temper-

ature minimum as a function of pressure (or com- -

position) at the so-called “double plait point.”
As discussed by Griffiths and Wheeler,? the
critical divergence for a given quantity must be
independent of the path of approach to a point of
the critical line at constant overall composition
except when approaching the critical line tangen-
tially. In this latter case, it is predicted that
the critical exponents will differ from their con-
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ventional values. Figure 1 shows several possi-
ble paths of approach to the critical line in the
P-T plane.

The purpose of this experimental investigation
was (1) to verify that the critical exponents for a
given quantity, in a region where P varies
smoothly with temperature, should be the same
whether the variable is taken to be P-P_or T
- T,, the composition x_ being held constant
(this prediction follows from the fact that in ei-
ther case the path followed is parallel to the co-
existence surface in the “field” representation
introduced by Griffiths and Wheeler?); and (2) to



