3629 (1973); T. B. Grimley, Proc. Phys. Soc. (London) 92, 776 (1967); D. M. Newns, Phys. Rev. <u>178</u>, 1123 (1969); J. W. Gadzuk, in *Surface Physics of Crystalline Materials*, edited by J. M. Blakely (Academic, New York, 1974).

⁴B. Feuerbacher and B. Fitton, Phys. Rev. B <u>8</u>, 4890 (1973).

⁵E. W. Plummer, to be published.

⁶T. Gustafsson, P. O. Nilsson, and L. Wallden, Phys. Lett. <u>37A</u>, 121 (1971); N. V. Smith and M. M. Traum, Phys. Rev. Lett. <u>31</u>, 1247 (1973); M. M. Traum, N. V. Smith, and F. J. Di Salvo, Phys. Rev. Lett. <u>32</u>, 1241 (1974).

⁷N. V. Smith, M. M. Traum, and F. J. Di Salvo, Solid State Commun. 15, 211 (1974).

⁸T. E. Madey, private communication.

 9 For a detailed discussion of hydrogen on W(100) see T. E. Madey, Surface Sci. <u>36</u>, 281 (1973).

¹⁰L. W. Anders, R. S. Hansen, and L. S. Bartell, J. Chem. Phys. <u>59</u>, 5277 (1973).

¹¹P. J. Estrup and J. Anderson, J. Chem. Phys. <u>45</u>, 2254 (1966).

¹²No peaks are plotted in Fig. 2 below -7 eV for $h\nu$ = 26.9 eV due to interference of the 19.8-eV spectral line of neon.

¹³A. Liebsch, Phys. Rev. Lett. <u>32</u>, 1203 (1974).

¹⁴E. W. Plummer, private communication.

¹⁵J. G. Endriz, Phys. Rev. B <u>8</u>, 3464 (1973); B. Feuerbacher and B. Fitton, Solid State Commun. <u>15</u>, 295 (1974).

¹⁶W. F. Egelhoff, J. W. Linnett, and D. L. Perry, unpublished results.

One- and Multi-Step Processes in the Reaction ¹⁴⁴Nd(¹²C, ¹⁴C)†

K. Yagi,* D. L. Hendrie, L. Kraus,‡ C. F. Maguire, J. Mahoney, D. K. Scott, and Y. Terrien Lawrence Berkeley Laboratory, University of California, Berkeley, California 94720

and

T. Udagawa, K. S. Low, and T. Tamura Center for Nuclear Studies, University of Texas, Austin, Texas 78712 (Received 30 September 1974)

Two very different types of angular distributions, one having a normal bell shape and the other being much more constant with angle were observed in the reaction ¹⁴⁴Nd(¹²C, ¹⁴C) for two well-known 2⁺ states of ¹⁴²Nd. The fits to these angular distributions using the distorted-wave Born approximation and/or coupled-channel Born approximation confirms the conclusion that the data give definite evidence for the importance of multistep processes. A comparison with the reaction ¹⁴⁴Nd(p, t) is also discussed.

In previous work^{1, 2} on the reaction ¹⁴⁴Nd(p, t)¹⁴²Nd, the excitation of the ground (0_g^+) state, the first excited (2_1^+) state, the 2.98 MeV (0_2^+) state, and the 3.49 MeV (2_2^+) state in ¹⁴²Nd (N = 82) was investigated. The purpose of the present work is to study these and additional states via the reaction ¹⁴⁴Nd(¹²C, ¹⁴C)¹⁴²Nd. Our interests are to learn to what extent the light-ionand heavy-ion-induced, two-neutron pickup reactions are similar and to determine the effects of multi-step processes in heavy-ion transfer reactions.

The most remarkable feature found in the previous (p, t) work^{1, 2} was that the transitions to the 0_g^+ , 0_2^+ , and 2_2^+ final states were strong and were of a one-step nature, while the transition to the 2_1^+ state was much weaker and also had an anomalous angular distribution markedly different from what was expected for a one-step L=2transition. The difference in the behavior of the 2_1^+ and 2_2^+ transitions was attributed to the following distinct properties of those states.² The 2_{2}^{+} state is a collective state of two-particle. two-hole nature in the N = 82 closed shell, i.e., a superposition of monopole and quadrupole pairing vibrations.³ Therefore, it can be excited strongly by a direct-(L = 2)-type two-neutron pickup reaction. On the other hand, the 2_1^+ state consists dominantly of a proton particle-hole quadrupole vibrational configuration; thus a direct twoneutron transfer process is substantially inhibited and higher-order processes may contribute significantly. Indeed, the anomalous behavior of the 2_1^+ cross section, which defied explanation in terms of distorted-wave-Born-approximation (DWBA) calculations, was well accounted for by coupled-channel-Born-approximation (CCBA) calculations, which took into account the effect of inelastic scattering.²

The ¹⁴⁴Nd(¹²C, ¹⁴C) experiment was performed

FIG. 1. Energy spectrum of the reaction 144 Nd(12 C, 14 C). Excitation energies in 142 Nd are shown in parentheses in MeV. The peak corresponding to the first excited state in 14 C is also shown.

using a 78-MeV ¹²C beam from the Berkeley 88in.-cyclotron. Reaction products were detected in the focal plane of a magnetic spectrometer.⁴ Particle identification and energies of the reaction products were obtained by a combination of magnetic rigidity, dE/dx, total energy, and time of flight. Figure 1 shows an energy spectrum of the ¹⁴C ions. A $300-\mu g/cm^2$ self-supporting isotopically pure metallic ¹⁴⁴Nd target gave a resolution of 200 keV. Angular distributions of the ¹⁴C groups leading to 0_g^+ , 2_1^+ , 0_2^+ , and 2_2^+ states and a group at about 2.08 MeV consisting of 3_1^- , 4_1^+ , 0_1^+ were measured from $\theta_{1ab} = 8^\circ$ to 55° in 2.5° steps.

Figure 2 gives the measured differential cross sections of the five ¹⁴²Nd groups, and one may conclude that the data have the following properties: (i) The 0_g^+ , 0_2^+ , and 2_2^+ states are excited strongly and have bell-shaped angular distributions which are characteristic of one-step transitions, with peaks appearing at $\theta_{c,m} \approx 45^{\circ}$; (ii) the 2_1^+ transition is strongly inhibited and has a quite anomalous (flattened) angular distribution: (iii) below the excitation energy of 3.5 MeV, 0_{e}^{+} , 0_{2}^{+} , and 2_2^+ are the only states that are excited strongly, in spite of the fact that there are about 25 states in this energy range known from other experiments.⁵ All these features are very much reminiscent of the situation for the (p, t) reaction.1, 2

Since the elastic scattering of ${}^{12}C$ by ${}^{142}Nd$ was not available, we began our analysis by using the

FIG. 2. Experimental and theoretical angular distributions of the reaction ¹⁴⁴Nd(¹²C, ¹⁴C) at $E_{1ab} = 78$ MeV. Each curve is labeled with a normalization factor N, so chosen that N = 1 for the 0_g^+ state. (Without this renormalization, all the theoretical cross sections are to be reduced by a factor 9.)

Körner *et al.* potential,⁶ which has V = 100 MeV, W = 25 MeV, $r_0 = 1.22$ fm, and a = 0.50 fm, and searched on radius and diffuseness so as to give the best overall fit to our transfer data. The resulting potential ($r_0 = 1.18$, a = 0.55 fm) was used in all theoretical calculations. The elastic crosssection predictions did not change much from that obtained with the unaltered Körner *et al.* parameters, nor differ very much from that obtained by using the parameters of Becchetti *et al.*⁷ We may therefore say that the conclusion we derive below is rather insensitive to the choice among optical potential parameters which are currently accepted.

In constructing the form factor(s) to be used in the DWBA and/or CCBA calculations,^{8,9} the wave functions of ¹⁴²Nd and ¹⁴⁴Nd were constructed in exactly the same manner as they were in Ref. 2 and by Udagawa, Tamura, and Izumoto.¹⁰ The overlap of these two wave functions gives the wave function of the two extra neutrons in ¹⁴⁴Nd. A corresponding wave function for the two extra neutrons in ¹⁴C can be obtained by using the results of Cohen and Kurath¹¹ and after transforming each of these two-neutron wave functions into the center of mass and relative parts, only the term that involved the relative motion which had no node and ${}^{1}S$ coupling was retained. The radial part of the corresponding c.m. part was then smoothly connected to the appropriate tail that corresponded to a Woods-Saxon potential with a radius parameter $r_0 = 1.2$ fm and a diffuseness a =0.65 fm.

The cross sections for the 0_g^+ and 2_1^+ final states were obtained by performing exact finiterange (EFR)-CCBA calculations, in which 0^+ and 2^+ Nd states were coupled in both incident and final channels, with $\beta_2 = 0.125$ and 0.096 for ¹⁴⁴Nd and ¹⁴²Nd, respectively. As is seen in Fig. 2 good simultaneous fits to both bell-shaped 0_g^+ and flattened 2_1^+ angular distributions are obtained. A corresponding EFR-DWBA cross section is also given by a dotted line for the 2_1^+ state, which is seen to have a completely different shape from the experimental angular distribution. The DWBA 0_g^+ cross section, which is also given by a dotted line, will be discussed later.

It is worth emphasizing that not only the angular distribution, but also the relative magnitude of the EFR-CCBA 0_g^+ and 2_1^+ cross sections were obtained correctly. It is worth noting further that the CCBA 2_1^+ cross section (solid line) was obtained as a result of destructive interference between the one-step DWBA process and the twostep processes, $0_g^{+(144}Nd) \rightarrow 0_g^{+(142}Nd) \rightarrow 2_1^{+(142}Nd)$ and $0_g^{+(144}Nd) \rightarrow 2_1^{+(144}Nd) \rightarrow 2_1^{+(142}Nd)$. The 2_1^{+} cross section given by a broken line was obtained by considering *only* these two-step processes. The very anomalous angular distribution results from this interference. Such a result is rather similar to what was experienced in the corresponding (p, t) work, where the contributions of the two-step and the one-step processes were comparable to one another and their strong interference made the 2_1^+ angular distribution also anomalous.²

A similar EFR-CCBA calculation was made considering a $0_g^+ - 3_1^-$ coupling in ¹⁴²Nd, and the resultant 3_1^- cross section, shown in Fig. 2, agrees rather well with the experimental angular distribution to the group at 2.08 MeV. The predicted magnitude obtained with $\beta_3 = 0.106$ is, however, too small by a factor of N = 2.7. Since the experiment includes the 3_1^- , 4_1^+ , and 0_1^+ , cross sections, however, we do not attach much significance to this comparison.

The calculation of the 0_2^+ and 2_2^+ cross sections was made in terms of EFR-DWBA, assuming that the excitation takes place only via pairing vibrational components in these states which have monopole and quadrupole nature, respectively.¹² As is expected the resultant cross sections (Fig. 2) are basically bell shaped, and agree satisfactorily with experimental angular distributions. The relative normalization factors N= 0.92 and N = 0.85, respectively, for these two states are sufficiently close to unity, indicating that the wave functions we used to describe these two states are basically correct.

It should be finally noted that, both experimentally and theoretically, the peak of the bellshaped angular distribution for the 0_2^+ state appears at 45°. On the other hand, the experimental peak for the 0_{g}^{+} state appears at 43°, i.e., a shift by 2° to forward angle takes place, and our CCBA calculations explain this. The corresponding DWBA cross section, however, has the peak at 45° (in agreement with that for the 0_2^{+} state) and the angular distribution (dotted line) fits the experiment rather poorly. The origin of the shift of 2° of the peak position in going from DWBA to CCBA is the destructive interference in the latter between the two-step $0_{g}^{+}(^{144}\text{Nd}) \rightarrow 2_{1}^{+}(^{144}\text{Nd})$ $\rightarrow 0_g^{+}(^{142}\text{Nd})$ amplitude and the one-step $0_g^{+}(^{144}\text{Nd})$ $\rightarrow 0_{g}^{+}$ ⁽¹⁴²Nd) amplitude. This destructive interference is stronger (weaker) for partial waves whose orbital angular momentum l is smaller (larger) than the grazing angular momentum l_{e} . Thus, the effective value of l_s for CCBA is larger than that for DWBA which results in the shift of the peak position to a smaller angle.

In summary, (i) the mechanism of the reaction ¹⁴⁴Nd(¹²C, ¹⁴C) is quite analogous to that of the reaction ¹⁴⁴Nd(p, t); (ii) the comparison of the transitions to the two types of 2⁺ states gives a definite evidence for the importance of two-step processes^{9,13}; (iii) since the direct transfer signature for this system is a clear bell-shaped angular distribution, the anomalous nature of the 2_1^+ excitation is much more conspicuous than that observed in the (p, t) case^{1, 2}; (iv) the coupling effect can be significant in predicting the correct angular distribution, in particular the peak position, even when the angular distribution has a simple bell shape. This was exemplified

VOLUME 34, NUMBER 2

in our 0_{g}^{+} cross section.

[†]Work performed under auspices of the U. S. Atomic Energy Commission.

*On leave from Osaka University, Osaka, Japan.

‡On leave from Centre de Recherches Nucléaires and Université Pasteur, Strasbourg, France.

[§]On leave from Centre d'Etudes Nucléaires de Saclay, Saclay, France.

Work supported in part by the U. S. Atomic Energy Commission

¹K. Yagi, Y. Aoki, J. Kawa, and K. Sato, Phys. Lett. 29B, 647 (1969).

²K. Yagi, K. Sato, Y. Aoki, T. Udagawa, and T. Tamura, Phys. Rev. Lett. 29, 1334 (1972).

³A. Bohr, in *Proceedings of the International Sympo*sium on Nuclear Structure, Dubna, 1968 (International Atomic Energy Agency, Vienna, Austria, 1968), p. 179.

⁴B. G. Harvey, J. Mahoney, F. G. Pühlhofer, F. S. Goulding, D. A. Landis, J. C. Faivre, D. G. Kovar, M. S. Zisman, J. R. Meriwether, S. W. Cosper, and D. L. Hendrie, Nucl. Instum. Methods 104, 21 (1972).

⁵J. F. Lemming and S. Raman, Nucl. Data, Sect. B <u>10</u>, 309 (1973).

⁶H. J. Körner, G. C. Morrison, L. R. Greenwood, and R. H. Siemssen, Phys. Rev. C <u>7</u>, 107 (1973).

⁷F. D. Becchetti, D. G. Kovar, B. G. Harvey, J. Mahoney, B. Mayer, and F. G. Pühlhofer, Phys. Rev. C 6,

2215 (1972). ⁸T. Tamura and K. S. Low, Phys. Rev. Lett. <u>31</u>, 1356

(1973); K. S. Low and T. Tamura, Phys. Lett. <u>48B</u>, 285 (1974); T. Tamura, to be published.

⁹T. Tamura, K. S. Low, and T. Udagawa, Phys. Lett. <u>51B</u>, 116 (1974).

10T. Udagawa, T. Tamura, and T. Izumoto, Phys. Lett. <u>35B</u>, 129 (1971).

¹¹S. Cohen and D. Kurath, Nucl. Phys. <u>A101</u>, 1 (1967). ¹²The probability of the pairing vibrational components in 0_2^+ and 2_2^+ states we used are 73 and 75%, respectively. These numbers were taken from the experimental fact that $\sigma(^{144}\text{Nd}(p,t)^{142}\text{Nd},0_2^+)/\sigma(^{142}\text{Nd}(p,t)^{140}\text{Nd},0_g^+) = 0.73$ and $\sigma(^{144}\text{Nd}(p,t)^{142}\text{Nd};2_2^+)/\sigma(^{142}\text{Nd}(p,t)^{140}\text{Nd},2_1^+) = 0.75$. See Ref. 2 for the experimental data. ¹³R. J. Ascuitto and N. K. Glendenning, Phys. Lett. 45B, 85 (1973).

Observation of the Yrast and Statistical Cascades in (Heavy-Ion, $xn\gamma$) Reactions

J. O. Newton, J. C. Lisle, * G. D. Dracoulis, J. R. Leigh, and D. C. Weisser

Department of Nuclear Physics, Australian National University, Canberra, Australian Capital Territory,

2600, Australia

(Received 29 October 1974)

The energy spectra and angular distributions of the yrast and statistical cascades in 160,162 Yb have been obtained from measurements of the reactions 147,149 Sm $(^{16}$ O, 3n) and 148,150 Sm $(^{16}$ O, 4n). An average of about six yrast and six statistical γ rays occur in the 4n reaction. The data suggest that the yrast γ rays are mostly stretched E2.

In recent years the study of discrete lines from low-lying states of final-product nuclei formed in (heavy-ion, $xn\gamma$) reactions has led to new and valuable information on nuclear states of high angular momentum.¹ However little effort has been devoted to the study of the γ -ray cascade resulting from the decay of the highly excited states. Because of the high level density in this region these γ rays cannot be resolved and they form a continuum.

The present view of the continuum decay¹ is briefly outlined below. States of high angular momentum ($\geq 20\hbar$) lying below about 1 neutron binding energy above the yrast line are expected to decay to states within a region of a few hundred keV above the line, mainly by a few dipole transitions, carrying away on the average little angular momentum but considerable energy. These transitions may have an energy distribution related to a statistical evaporation spectrum. States in the yrast region are forced to decay along this region mainly by stretched transitions to states of lower spin and energy until the groundstate band (gsb) is reached. Decay then proceeds through the gsb. The time of ~ 10 psec between the initial formation of the compound nucleus and entry to the gsb^1 implies that the states in the intersection region must be heavily admixed and that the transitions in the yrast region must be mainly E1, M1, or E2 and must have little dispersion in energy. The theoretical work of Stephens and Simon² suggests that the transitions should be mainly E2. Little direct experimental evidence has been presented to support this model although recently Tjøm et al.³ and der Mateosian, Kistner, and Sunyar⁴ reported measurements which determine the average numbers of continuum γ rays for several cases without sep-