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result should be brought into better agreement with ex-
periment.

~ g* has recently been calculated by T. Ando and
Y. Uemura, J. Phys. Soc, Jpn. BV, 1044 (1974). These
authors evaluate both the semiclassical g value and its

quantum oscillations, but only in a static approxima-
tion.

T. K. Lee, C. S. Ting, and J. J. Quinn, to be pub-
lished.

B.Vinter, to be published.
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Ultraviolet photoemission spectroscopy has been used to measure surface states on
cleaved silicon with varying step-atom densities determined by low-energy-electron dif-
fraction. For high step densities (- 10%) a new surface-state peak is found at an energy
0.4 eV higher than the main surface-state peak. These measurements are the first dem-
onstration that surface-state photoemission spectra depend strongly on cleavage steps.

Intrinsic surface states have been observed in
several laboratories by ultraviolet photoelectron
spectroscopy (UPS) for cleaved silicon, germa-
nium, and gallium arsenide as well as for an-
nealed silicon and germanium surfaces. ' ' It is
somewhat surprising that most results on the
same surface obtained by different workers tend
to agree since the surface morphology may not
be reproduced. ' ' An exception to this rule are
UPS experiments' on cleaved gallium arsenide
(110) where it has been suggested that surface
steps on poor-quality cleavages may play an im-
portant role in determining the surface-state dis-
tribution. +' We report in this paper the first ex-
perimental correlation of surface steps observed
by low-energy-electron diffraction (LEED) and
UPS measurements of surface-state energy dis-
tributions. The present measurements are re-
stricted to the (111)cleavage faces of silicon but
qualitatively similar results should be obtained
on other cleaved semiconductor surfaces. ' '

The importance of surface steps on semicon-
ductor surfaces has been recognized by a number
of authors. Henzler has discussed LEED tech-
niques for determining step heights and terrace
widths. '"' Ibach and co-workers have determined
the step dependence of oxygen chemisorption on
cleaved silicon surfaces. ' Since detailed studies
of surface states' ' have been made on both an-
nealed and cleaved silicon surfaces, this mater-
ial seems to be most appropriate for studying the
correlation of surface states and surface steps.
%e find that both dangling-bond surface states
and back-bond surface states depend on the step

density. Some additional features of dangling-
bond states near the band gap of high-step-den-
sity cleaved surfaces are found to be similar to
previous results on annealed (111) surfaces. '

Single crystals of boron-doped Si were used
with carrier concentrations in the range 10'—
10" cm '. The samples were oriented with (111)
surfaces parallel to notches cut in a bar of 5
x 15' 70 mm' dimensions which allowed multiple
cleavages. Experiments were performed in a
stainless-steel ultrahigh-vacuum chamber with
a base pressure of - 5x 10 "Torr. Hydrogen
couM be introduced from a high-purity flask by
a standard leak valve. A polycrystalline tungsten
ribbon of dimensions 6&20& 0.2 mm' was heated
to -2000'K to dissociate the H, gas into H atoms.
This proved to be a factor of -10' more efficient
than the shielded filament of an ion gun used in
previous UPS studies of hydrogen adsorption on
silicon surfaces. " A PHI 15-250 double-pass
cylindrical-mirror electron- energy analyzer"
was used with a He resonance lamp for UPS mea-
surements. Other detai. ls of the multiple-tech-
nique apparatus have been previously described. "

Typical experimental LEED observations are
shown in Fig. 1 for (a) low-step-density and

(b) high-step-density surfaces at 40-eV primary
energy. Using the methods discussed by Henz-
ler"' we verified that the average step height is
one double layer (3.14 A) and that the fractional
density of step-edge atoms is (3+ 2)% for the
low-step-density surface [Fig. 1(a)j and (10+ 2)%
for the high-step-density surface [Fig. 1(b)].
The low-step-density surface has two domain
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FIG. 1. LEED patterns (40 eV} for cleaved silicon
surfaces with (a) low step density (- B~/&} and (b) high
step density (-10/~). Even the low-step-density pat-
tern exhibits some elongation of the diffraction beams
and has two domain orientations of unequal intensity.
The high-step-density pattern exhibits split diffraction
beams and streaks indicating a considerable distribu-
tion of step dimensions.

orientations of unequal intensity within the - 0.5

mm diam of the LEED beam. The high-step-den-
sity surface exhibits a splitting of the integral,
order and one-half-order LEED beams as well
as streaks which appear along two of the three
possible domain orientations of steps. The
streaks indicate a type of one-dimensional order
which is probably caused by a considerable dis-
tribution of step dimensions over some parts of
the cleaved surface.

The one-half-order LEED features were not
present on the highest step-density surfaces
f- (16+3)%] we observed and were found only on
surfaces with step density less than (12+ 2)%.
This suggests that strain fields (or other local
forces) inhibit reconstruction for terrace widths
less than 40-50 A on cleaved silicon. Similar
quenching of 2x 1 reconstruction on cleaved ger-
manium (111) surfaces has been reported by
Henzler' for terrace widths less than 60-75 A.

The average distribution of steps was found to
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FIG. 2. UPS for the "dangling-bond" surface states
near the valence-band maximum E&z. The initial en-
ergy scale corresponds to curve b for the high-step-
density surface. Curves a and c have been shifted by
+0.25 and +0.85 eV to align E&p, (see text).

be strongly dependent on the orientation of cleav-
age notches with respect to the (111)plane. ln
most cases, consecutive cleavages from the
same sample bar produced step densities with-
in a+ Fo range.

Photoemission results for these two clean sur-
faces (see Fig. 1) are shown in Fig. 2 for a pho-
ton energy Lo =21.2 eV. After UPS measure-
ments on each clean surface, data were obtained
for the hydrogen-covered surface with the light
intensity held constant. The Fermi energy ref-
erence, EF, was determined from UPS data on
clean Cd films evaporated in situ over the cleaved
Si(111). The position of the bulk valence band Ev
was determined from direct-transition peaks
present in UPS data, at hm ~ 11.7 eV. '"' For the
low-step-density surface we find E F -E~ = 0.55
+ 0.15 eV (curve a in Fig. 2) but for the high-
step-density surface EF -E~ =0.30+ 0.15 eV. For- 1 monolayer coverage of atomic hydrogen on
both surfaces we find E F -E~ = 0.65+ 0.15 eV.
The low-step-density clean surface has a broad
Gaussian-like band of surface states with a sin-
gle peak at 0.9+ 0.1 eV belOW E F in gOOd agree-
ment with previous results from several labora, -
tories. ' ' However, the high-step-density sur-
face has a double-peaked structure with an addi-
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TABLE I. Surface states on cleaved silicon with
steps.

Ap'

Transition
Energy'

(eV) Step dependence

Ag

Bg
B2
Ap

Agg

0.5 + 0.2
2.4 + 0.2
8.6 + 0.2

11.3 + 0.4
18.5 + 0.4

Strong
Strong
Weak
Weak
Strong

UJ

4J
lK

(a) ~Measured relative to Ez. The position of EF -E&
varied with step density from 0.80 eV for high step den-
sity to 0.55 eV for low step density.
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FIG. 3. UPS for clean low-step-density surface
(curve a), after adsorption of - 1 monolayer of atomic
H (curve b), and the difference curve (curves a —b)
with the vertical scale times 1.5 (curve c). The fea-
tures B&, B&, A&, and A&. are due to back-bonding sur-
face states below the valence-band maximum.

tional peak which occurs 0.4 eV higher than the
previous peak and thus has a large overlap into
the band-gap region above the bulk-valence-band
maximum. The sharp increase in photoemission
near EF (see Fig. 2, curve b) suggests that these
additional step-dependent surface states may be
nearly metallic similar to a previous interpreta-
tion of results for the annealed Si(111) 7x 7 sur-

facee.

These results are qualitatively similar to a
recent reinterpretation+' of Eastman and Grob-
rnan's UPS data on cleaved GaAs(110). They

found surface states which are -0,5-1 eV higher
in energy than surface states on low-step-den-
sity surfaces and extend into the forbidden gap.
Although no detailed information on the density
of cleavage steps is available it has been sug-
gested that a high step density is responsible for
the "extra" surface states. ~ '

In Fig. 3 we show UPS data over a wider ener-
gy range for the low-step-density surface, curve
a; the hydrogen covered surface, curve b; and
their difference, curve c. Back-bond surface
states are labeled B„B„A„andA, along with
the dangling-bond states A, of Fig. 2 using the
previous notation. "" Numerical values for peak
energies are given in Table I. The high-step-
density surface gave similar results for B, and
A3 peaks but showed an inc re as e in peaks B, and
A, . as well as the results discussed above (see
Fig. 2) for A, . Because of the overlap of bulk
states below E& we cannot resolve any splitting
of back-bond peaks B, and A, on the high-step-
density surface as found for the A, dangling-bond
peak.
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A simple model for the temperature dependence of charge transfer in organic donor-
acceptor solids is presented. It is shown that under certain conditions a transition can
occur from a state of smaller charge transfer below the transition temperature to one of
larger charge transfer above. The possible relevance of these results to observed metal-
insulator transitions in organic solids is discussed.

It is the purpose of this note to point out the possible occurrence of an electronic instability in cer-
tain organic charge-transfer solids, exemplified by tetrathiafulvalene-tetracyanoquinodimethane (TTF-
TCNQ), in which states of zero and unit charge transfer lie very close in energy. In such a solid the
equilibrium amount of charge transfer will be determined by an interplay between the orbital energy re-
quired to transfer an electron from donor to acceptor and the resulting change in Madelung energy. On
the basis of a simple model of this situation, it will be shown that under certain conditions an electron-
ic phase transition can occur from a state of small charge transfer below the transition temperature
to one of substantial charge transfer above. The model employed here is similar in spirit to that intro-
duced by Falicov and Kimball' to describe temperature-dependent charge transfer between localized
and Bloch states in inorganic semiconductors.

The model system consists of an array of N donor molecules (D) and N acceptors (A) considered in
the atomic limit, i.e., all intermolecular transfer interactions are ignored. The Hamiltonian for the
system is

[p q A+ & (2 q D)] + —P [P AAq Aq A+ P DDq Dq D+ + AD(q Aq D+q Dq 4)]

where e~ is the energy of the lowest, normally empty acceptor orbital, e~ is the energy of the highest,
normally filled donor orbital, q,."(q,D) is the net charge on the ith acceptor (donor), and the V, ,'s rep-
resent the Coulomb interactions between ith and j th unit cells. In the approximation in which the q,-'s
are replaced by their average values (1) becomes, apart from an additive constant,

3C = N(aq + bq'),

where

(q D) (q A) a ~ ~ b ~P (y AA+ y DD 2y AD)

(2)

(Note that, in principle, a and b can be of either sign, depending on the details of the particular sys-
tem. )

The entropy of the system follows from the observation that in the charge state of the system repre-
sented by D "A ' there are 1Vq holes (of spin degeneracy 2) to be distributed among N donors and Nq
electrons among N acceptors. States with two holes (electrons) on the same donor (acceptor) will be
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