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Effective Mass and g Factor of Interacting Electrons in the Surface Inversion Layer of Silicon*
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(Received 23 December 1974)

The effective mass and the g factor of quasiparticles near the Fermi surface of a two-
dimensional electron gas are calculated in the random-phase approximation and in the
Hubbard approximation, and are compared with the experimental results for an inversion

layer on a (100) surface of silicon.

When a sufficiently strong electric field is ap-
plied normal to the surface, the electrons in the
inversion layer of a metal-insulator-semicon-
ductor (MIS) structure form an essentially two-
dimensional interacting electron gas.! Because
the electron concentration can be experimentally
varied over a wide range, this system is a useful
testing ground for approximate methods of cal-
culating the effect of many-body correlations on
measurable properties of the system. The g fac-
tor and the effective mass m* of quasiparticles
near the Fermi surface are two such properties.
They have been measured over a wide range of
concentrations for a (100) surface inversion layer
of silicon by Fang and Stiles,' and by Smith and
Stiles.? The measured values of both quantities
are considerably larger than their counterparts
in intrinsic bulk silicon, and they increase as the
electron density is lowered. Janak,® and later
Suzuki and Kawamoto,* evaluated the enhancement
of the g value and of the effective mass caused by
electron correlations within the framework of a
static approximation which neglects the frequency
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dependence of the dielectric function. Chaplik®
has calculated the effective mass by using an ap-
proximate dielectric function. Though some of
the results obtained by these authors are in qual-
itative agreement with experiment, the many-
body approximations employed are equivalent to
the simplest approximations in three-dimensional
systems.® Since such approximations are incapa~
ble of yielding quantitative results, these calcula-
tions cannot be used as a test of the most refined
many-body approximations, nor of the assump-
tion built into the two-dimensional model of a
semiconducting inversion layer. In the present
paper we calculate m* and g* by using the dy-
namic random-phase approximation (RPA) and
the Hubbard approximation (HA). The HA and
slight modifications of it are considered the most
accurate many-body approximations for a three-
dimensional electron gas. Both the RPA and the
HA are discussed clearly by Rice,” and the read-
er is referred to his paper for general back-
ground.

The total energy of the interacting electron
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system can be written”®
E-E® -55 [* @ /NI [* (@do/20)[ (g, )] + N/} )

In the HA the dielectric function is given by®

€(q,w)=1+27,5414 ,4(q, w)[1 - 871g(q) A, 4(q, w)]™*, (2)
where
Ayslg, @)== /2935 [ (dw' /2m) G (K, 0 )G (K +§, 0’ +w) (3)

is the contribution from electrons in valley » with spin 0 to the polarizability of a noninteracting elec-
tron gas A(q,w). Throughout this paper we neglect intervalley scattering.? The effective charge e is
equal to the free-electron charge divided by the square root of the background dielectric constant € o of
the surrounding medium. The Hubbard modification factor® g(q) is assumed to be given for the two-
dimensional system by g(q)=3 q[q®+ Bk r°]"*’%, where k; is the Fermi momentum and 8 is a parameter
of the order of unity.® The single-particle Green’s function G*°(k, w) for an electron in valley v with
spin 0 is given by

n’°(k) 1 -n"°(k)

Gk, w)= w=-wy(k)—1id +w—w(,(k)+z'6 :

(4)

Here n"°(k) is the Fermi distribution function and w4 (k)= w (k) +0guyH/2, where w(k)= k?*/2m, py is the
Bohr magneton, and H is the strength of the applied magnetic field. The single-particle energy €,,(p)
can be obtained from Eq. (1) by taking the functional derivative with respect to #°°(p):

e2 0 voqgE: >

S, a d
e”"(p)zw(p)+§0guBH—2'[ = Imf © __2maG (p+d,welp)+w)
d Yo o

27 g€%(q, W) [1 - 87g(q)A,o(q, ) F °

This is the basic starting equation for calculation of the effective mass m*. The effective mass is de-
fined by m*=[(p~'de,;/dp) " ]p=p m=o- In the absence of an applied magnetic field €*°(p) can be deter-
mined by dropping the spin index ¢ and valley index v and integrating over the coupling constant A:

€@)=w@) -2 5 [(dw/2m) [2e*/qe5(q, w)|G(H+E, w +w(p)) . (6)

In this equation the “dielectric function” €5 is given by €(q, w)=1+2[n, -g(g)]41A(g, w), where n, is
the valley degeneracy. €g(q, w) is analytic in the upper and lower halves of the w plane, but has zeros
along the real axis. In order to carry out the w integration in Eq. (6), the singularities arising from
€5(q, @) have to be avoided. This difficulty can be solved by transforming the integration®” along the
real w axis to the imaginary w axis. The resulting expression for m* takes the form m /m* =1+ 1111
+I"* where I''™ ig the contribution from the integration along the imaginary w axis, and I'® is the
contribution from the poles of the Green’s function. If we make the variable transformation z = q/2kg,
w/w(ky)=2zu, then I''™ and I"* can be shown to have the form

(5)

Itine = —2ars/n+(4ﬁars/n)f()wdz fowdu [1/€s(z, iu) =1][C(z,u)] "2
x{D(z,u)[1 +D(z,u)/C(z,u)]""* = B(z,u)[1 - D(z,u)/C(z,u)]'2}, (7
I = (ars/m) [, dz/2(1 —2%)}%;(z, 0). (8)

The functions D, B, and C are given by D(z,u)=42%~u®~4, B(z,u)=4zu, and C(z,u)=[D?(z,u)
+B%(z,u)]'?. « equals (r,/2)" and 7g = (1a®N;,,) /2 is the ratio of the mean radius per particle in
the layer to the Bohr radius ap in bulk silicon. €g(g, w) has been calculated by Stern'® for real values
of w. For imaginary w, it can be evaluated by using the fact that the polarizability A(z,iu) can be
written as Az, iu)=ars(16m22) {22z = [3C(z,u) +3 D(z,u) '3},

To obtain the g value, we use Landau’s Fermi-liquid theory.!! A Landau interaction function f,,,,'v,(,:(ﬁ,
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D) can be obtained by taking the variational derivative of Eq. (5) with respect to n,.4(p”):

_ B4y/0,21€
]5—5’]63(_15_‘5’, 0)

fvo,v’o’(-ﬁ’ ‘ISI) =

Ta [ " dw (A\2GY@B+D, £ +w) [G" (B +3, & +w)+G" T B -G, & —w)]
+ ~ d’qRe| —(—
0 0

21 \ q

€3(q,w) |1 -81g(q)A ,5(g, w)P

x < Ogo Ourdgld)  _ 2 > o)
1-81g(q)A,0(q,w) €lg,w)[1-87g(q)A, 5 (q, )]/ "
This function represents the interaction between a quasiparticle of momentum P and spin ¢ in valley v
with one of momentum P’ and spin 0’ in valley v’. The quantity £, is the energy w(p) measured rela-

> >,

tive to the Fermi energy. We sum Eq. (9) over v’, and, following Landau, define fs(p,p’) and f,(p,p’)
by the relation 2}, fou. 0@, D) =/s(B, B') +3 - 'f,(B, p’). To obtain the g factor for the quasiparticles we

use the result!?

g/g*=1+m*/m) [*" (do/2m)fu(¢), (10)
where p*P’ =k cosp. This expression can be transformed to g/g*=1+1I, +1,, where
* 2m
11:“%7_'1— L d(p (L ) (11)
21 m J, 2sin(ze)es(2sin(ze), 0)
_Hars m* * . gl) (7 F(Z,u)< D(Z,u)>
L= == — ]0 dz =5 fo dwC(z,u) 1+C(z,u) . (12)
The function F(g, w) is defined by
. Neo | =8mm,A(z,iu) eslz,iu) ]
- 2 v ) )
F,u)=[8m,Al, iu)] l: €5z, iu) + (es(z,z'u)—87va(z,iu) : (13)

With neglect of I,, our expression for g/g*
should reduce to the results of the static approx-
imation.>* However, a careful examination
shows that our result for I, differs from that of
Janak® by a factor n, when the Hubbard factor
£(@)=0, and our g(q) differs from that of Suzuki
and Kawamoto® by a factor n,. This is due to the
fact that the contribution from valley degeneracy
has not been properly accounted for in these ref-
erences. The integrals appearing in Eqgs. (7),
(8), (11), and (12) can be done numerically. By
using n,=2, €,=11.8, and m =0.19m, for the
mass of electrons on the (100) plane of the in-
trinsic silicon, we obtain the results for m*/m
as a function of g shown in Fig. 1, and for g*/g
as a function of electron concentration shown in
Fig. 2. The curves labeled HA correspond to the
Hubbard approximation with 8=1°% the curves
labeled RPA correspond to setting the modifica-
tion factor g(¢g) equal to 0. The open circular
dots are obtained from experiment.*® For m*
both the HA and RPA give reasonable agreement
with experiment.!® Quite surprisingly for g* the
RPA gives much better agreement with experi-
ment than the HA. The decrease of g* for small
values of the electron concentration (or large #g)
in the HA is in qualitative agreement with the
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' calculated results in three dimensions,” but the

physical reason for the disagreement with ex-
periment is not known.!*

2.2

0.0 1.0 2.0 3.0 4.0 5.0 6.0

FIG. 1. m*/m as a function of »g. Our result in
Hubbard approximation is shown by the curve HA. The
result with g(g) =0 is shown by the curve RPA. The ex~
perimental curve of Ref. 2 is shown by open circles.
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FIG. 2. g*/g as a function of Ny ,. J (SRPA) and
SK (SHA) represent curves obtained in Refs. 3 and 4
for static RPA and static HA, respectively. The curve
with open circles was obtained experimentally in Ref. 1
and corrected with effective mass in Ref. 4.

We would like to thank Professor P. J. Stiles,
Professor A. Houghton, and Dr. P. Lee for use-
ful conversations.

Note added —Since submitting this paper we
have investigated the modification of the Coulomb
interaction between inversion-layer electrons
caused by the presence of the insulator and me-
tallic gate electrode and by the finite extent of
the electron wave function normal to the surface.
When this effect is accounted for, the problem
of which dielectric constant (that of silicon or
the average of silicon and its oxide) enters the
effective interaction disappears. The results for
m* and g* obtained with the modified interaction
are in much better agreement with experiment.'®
The effective mass has been evaluated by Vin-
ter'® in the plasmon-pole approximation starting
from Dyson’s equation. Dyson’s equation differs
from our Eq. (5) because the guasiparticle ener-
gy €°9(p) instead of the bare-particle energy
w,(p) enters the Green’s function appearing on
the right-hand side. We believe that Eq. (5) is
more reliable if the electron self-energy is eval-
uated only to the lowest order in the effective in-
teraction.” We thank Dr. L. Sham, Dr. F. Stern,

and Dr. B. Vinter for bringing this to our atten-
tion.
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BThe small overestimate of m * in our calculations
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result should be brought into better agreement with ex-
periment.
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authors evaluate both the semiclassical g value and its

quantum oscillations, but only in a static approxima-
tion.
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Photoemission Measurements of Step-Dependent Surface States on Cleaved Silicon (111)
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Ultraviolet photoemission spectroscopy has been used to measure surface states on
cleaved silicon with varying step-atom densities determined by low-energy-electron dif-
fraction. For high step densities (~ 10%) a new surface-state peak is found at an energy
0.4 eV higher than the main surface-state peak. These measurements are the first dem-
onstration that surface-state photoemission spectra depend strongly on cleavage steps.

Intrinsic surface states have been observed in
several laboratories by ultraviolet photoelectron
spectroscopy (UPS) for cleaved silicon, germa-
nium, and gallium arsenide as well as for an-
nealed silicon and germanium surfaces.'™® It is
somewhat surprising that most results on the
same surface obtained by different workers tend
to agree since the surface morphology may not
be reproduced.*”” An exception to this rule are
UPS experiments?® on cleaved gallium arsenide
(110) where it has been suggested that surface
steps on poor-quality cleavages may play an im-
portant role in determining the surface-state dis-
tribution.®*® We report in this paper the first ex-
perimental correlation of surface steps observed
by low-energy-electron diffraction (LEED) and
UPS measurements of surface-state energy dis-
tributions. The present measurements are re-
stricted to the (111) cleavage faces of silicon but
qualitatively similar results should be obtained
on other cleaved semiconductor surfaces.® 8

The importance of surface steps on semicon-
ductor surfaces has been recognized by a number
of authors. Henzler has discussed LEED tech-
niques for determining step heights and terrace
widths.®~® Ibach and co-workers have determined
the step dependence of oxygen chemisorption on
cleaved silicon surfaces.® Since detailed studies
of surface states!~® have been made on both an-
nealed and cleaved silicon surfaces, this mater-
ial seems to be most appropriate for studying the
correlation of surface states and surface steps.
We find that both dangling-bond surface states
and back-bond surface states depend on the step
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density. Some additional features of dangling-
bond states near the band gap of high—step-den-
sity cleaved surfaces are found to be similar to
previous results on annealed (111) surfaces.?
Single crystals of boron-doped Si were used
with carrier concentrations in the range 10—
10" em~®. The samples were oriented with (111)
surfaces parallel to notches cut in a bar of 5
X 15X 70 mm? dimensions which allowed multiple
cleavages. Experiments were performed in a
stainless-steel ultrahigh-vacuum chamber with
a base pressure of ~5x 10! Torr. Hydrogen
could be introduced from a high-purity flask by
a standard leak valve. A polycrystalline tungsten
ribbon of dimensions 6% 20X 0.2 mm?® was heated
to ~2000°K to dissociate the H, gas into H atoms.
This proved to be a factor of ~ 10> more efficient
than the shielded filament of an ion gun used in
previous UPS studies of hydrogen adsorption on
silicon surfaces.'® A PHI 15-250 double-pass
cylindrical-mirror electron-energy analyzer'!
was used with a He resonance lamp for UPS mea-
surements. Other details of the multiple-tech-
nique apparatus have been previously described.'?
Typical experimental LEED observations are
shown in Fig. 1 for (a) low-step-density and
(b) high~step-density surfaces at 40-eV primary
energy. Using the methods discussed by Henz-
ler®® we verified that the average step height is
one double layer (3.14 A) and that the fractional
density of step-edge atoms is (3+2)% for the
low—step-density surface [Fig. 1(a)] and (10 2)%
for the high—step-density surface [ Fig. 1(b)].
The low-step-density surface has two domain



