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A scaling-field representation of Wilson’s exact renormalization-group equation is de-
rived and used for the approximate calculation of critical exponents for the continuous-
spin Ising model in three dimensions, The truncation of the hierarchy of scaling-field
equations that retains only the four most relevant scaling fields yields the critical expo-
nents v~ 0,60, 7~0.06, and A;~—0.47 (where A, denotes Wortis’s correction-to-scaling

exponent).

Within the renormalization-group approach,!’? exponents. The truncation retaining the two most
the scaling theories for critical phenomena have relevant scaling fields yields v=0.55 and n =0.
been reformulated from an essentially micro- The truncation that retains the four most rele-
scopic standpoint.® The scaling-field idea*® has vant fields yields improved values v~ 0.60 and 1
played a prominent role in these developments, =0.,06; and it yields A, ~—0.47 for Wortis’s cor-
which grew out of Wilson’s fixed-point hypothesis®’  rection-to-scaling exponent.”*®* Approximations
and the concept of a spectrum of critical opera- to the full hierarchy of scaling-field equations in-
tors.®*” In several recent papers the scaling- troduce a weak dependence (to be discussed be-
field idea has been applied and developed fur- low) of critical exponents on redundant parame-
ther.®™2 This Letter concerns a microscopic ters in the renormalization-group approach.'#:5
derivation of the basic scaling-field equations The approach, if it converges, constitutes a sys-
for Wilson’s generalized Ising model® and the ap- tematic method for generating quantitative, im-
plication of these equations to the calculation of provable approximations to critical phenomena
critical exponents in three dimensions. in three dimensions. [Previously, specific re-

The method of calculation is based on an ex- sults for continuous-spin systems?® were obtained
plicit scaling-field representation of Wilson’s ex- near the molecular-field limit (by € expansion
act renormalization-group equation for the con- about four dimensions) and near the spherical-
tinuous-spin Ising model.? By an expansion about model limit (by 1/% expansion).] The conver-
the Gaussian fixed point the Wilson equation is gence of the method will be investigated by ana-
transformed into an infinite hierarchy of ordi- lyzing further truncations. (In the previous for-
nary differential equations for scaling fields. mal and semiphenomenological applications of
The results are exhibited in Egs. (4) and (9) be- the scaling-field idea the question of convergence
low. The fixed-point properties of these equa- could not be studied.) In summary, the potential
tions determine critical exponents, and the flow significance of the scaling-field method is that it
properties of the equations yield scaling func- provides a unified framework for the calculation
tions and crossover phenomena. Approximations of critical exponents (including logarithmic cor-
are generated by truncating the hierarchy of rections®), scaling functions,®*? and crossover
equations according to the degree of relevance phenomena.?!?
of the scaling fields to be retained. Preliminary The method of calculation is described briefly.
results based on the two simplest, successive The exact Wilson equation [Eq. (11.17) of Ref. 2]
truncations of the scaling-field equations yield determines the- evolution of the effective renor-
remarkably good estimates for the Ising critical malization-group Hamiltonian H; as a function

l of I,
0H, 1 - 6H, dp , N\/OH, 8H, 6%, OH,
—a—l_:,[(zdc“ +q° V"U“)EZ + fq(dl + 2q)<$: 5., 8000 950, ) . 1)

The initial Hamiltonian, H,, is the generalized, continuous-spin Ising Hamiltonian; spin variables are
denoted by o; the symbol J, denotes the d-dimensional integral [d%. The function p(!) acts as a spin
rescaling parameter that must be properly chosen in order to find a fixed point of the renormalization-
group transformation.?*® If for a given fixed point H* we write dp*/dl =1+ A* then the critical expo-
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nent 7 is determined by?
nN==- 2A *a (2)

Associated with this fixed point is a set of trans-
lationally invariant eigendensities Ot[xe"’;c], de-
termined by the renormalization-group equation
linearized about H*.2

The eigendensities provide an operator basis
in the space of effective Hamiltonians H;, which
allows the expansion*

Hy=H*+23;1,;0)Q;, (3)

where the Q; =e”%[,0,[xe?;0] are independent of
!. Hence the evolution of H; as a function of I can
be equivalently described by the evolution of the
coefficients 4;(!). By substituting the expansion
(3) into the Wilson equation (1) and projecting all
resulting terms onto the basis @; via an opera-
tor-product expansion [Eq. (9) below] the Wilson
equation is transformed into the infinite hierar-
chy of coupled differential equations,

d
dL;i :yi“i+Eal,jk#j“k+A(Ejal'j”j+a£)y (4)
Jik

where A =dp/dl —dp*/dl. They, are the eigen-
values associated with the basis operators @;.

-

Q,,,,,=if) A P R 1A R TCR
=1

The projection coefficients a are defined by

dp 2> 0Q; 69,
.[(dt +2 b0, 50_q—Eiai,ij¢, (5a)
oH* 8 )09,
fq<2 aa-q+0"+60-a> 60, “Zi)“-'.jQu (5b)
OH* 5 \OH*
[(60-q+0”+60_q> 50, —lEa,Qi. (5¢)

These equations are valid for any fixed-point
Hamiltonian H* and its associated set of basis
operators Q;.

For expansions (3) in terms of the basis of
Gaussian eigenfunctionals, the projection coeffi-
cients @ can be explicitly evaluated. The Gaus-
sian solution of Eq. (1) has been discussed by
Wilson and Kogut.? (In three dimensions it de-
scribes tricritical phenomena and in four dimen-
sions critical phenomena in the mean-free limit.)
The Gaussian fixed-point Hamiltonian is

Ho*==%Ju,*@o,0-, ()

with u,*(q) =Aq?/ [Aq® +exp(~ 2¢%)] and dp*/dl =1.
The parameter A denotes the arbitrary normal-
ization of the kinetic energy term in the Hamil-
tonian. The Gaussian eigenfunctionals have the
general form

-Og,s (7

and are labeled by the pair of indices {m,p}. In Eq. (7), thev,,*’ are polynomials in g times a momen-
tum conservation 6 function, and ¥(g) = exp(— ¢2)/[A¢? + exp(- 2¢%)]. Under the linearized renormaliza-
tion-group transformation, the I dependence of the eigenfunctional @,, is given by a multiplicative fac-
tor, exp(yml) withy,,=d —3m(d -2)-p,

Consider an arbitrary functional Po{o}. If it is expanded in terms of the Gaussian eigenfunctionals,
Po{o}zzm,,,am,Qm,, then, according to the linearized renormalization-group equation, it will evolve as

Pl{o'}= Ziamp eXp(ympl)Qmp- (8)

Thus, by decomposing the linearized evolution of Pl{o} in terms of the characteristic / dependence
exp(y mpl) of the @,,, the initial expansion coefficients a,, can be calculated. The projection operator
that accomplishes this decomposition of P,{a} is derived by linearizing the integrated form of the ex-
act renormalization-group equation [Eq. (11.7) of Ref. 2] about the Gaussian fixed point. Writing H ,{0”}
=Hg, ,*{o”}+P,{o”}, where o” is the as yet unrescaled spin variable, this yields

expl-a,()]
B(q,1)

_ _ /2 ’
Pl{o”}zc-/j{s ) eXp(- %LSQS_G)PO{ < 1 e)g)([q’lz)aq(l)]) S+ Uq”} , (9)

with B(g,2) =u,*(q) + [1 —u,*(@)] exp[- 20,(1)], the incomplete integration function &, () = (€2’ = 1)g%+p (1),
and the normalization constant c = exp[- 36(0)/,In27]. When Po{c} is a polynomial in o, (as needed in
our case), the functional integration over s, is easily accomplished. After a final rescaling of the mo-
mentum and spin variables, ¢’ =ge’ and o, = exp(~3dl)o,”, Eq. (8) is obtained. Thus, the projection
operator (9) permits the unambiguous decomposition of the ! dependence of any polynomial Po{o} and
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hence the determination of the projection coefficients in Eq. (4). For example, the p =0 coefficients
@0, 50,10 Of Eq. (5a) have the form ayq, ;0,1 =Cy,;11s, Where the c; ;, are combinatorial factors, the sub-

scriptn=3(k+j-i)=1, I,=(1+A), and, for n>0,

[,,:f f [L+A)+2@ +00 o+ 0?02 @ + oo o+ T)
a n

Equations (4) and (9) are the central result of
this paper. They define the scaling-field repre-
sentation of the exact Wilson equation for the gen-
eralized, d-dimensional, continuous-spin Ising
model. We use these equations as a starting
point for the calculations of critical phenomena
in three dimensions as described in the introduc-
tion.

The two successive truncations to the hierar-
chy of scaling-field equations investigated so far
are, first, the coupled equations (denoted E2) for
the two most relevant scaling fields U,, and U3
and second, the coupled equations (£4) for the
four most relevant scaling fields Uy, Hyg, Mgy
and U,,. For example, the truncation E2 is giv-
en by d il y/dl = 24 5o + 201 502 + 20 g b 4o + To1 4%, and
Al 4o/A1 = 4o+ BI  polh 4o + 6L, 14 4o%.  Equations for
the two and three most relevant odd scaling fields
Ko, Hag, and Uy, Were also considered and will
be referred to as 02 and 0O3.

The solutions of the truncations E2 and E4 ex-
hibit lines of non-Gaussian critical fixed points
parametrized by the normalization constant A of
the Gaussian fixed-point functional (6).}* The as-
sociated critical exponents v, which are deter-
mined via the standard eigenvalue method,? are
shown in Fig, 1 as functions of A, First, for the
two successive truncations the value of v im-
proves relative to the mean-field result v =0.5.
For large A the two approximations yield v = 0.55
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FIG. 1. Critical exponent v as a function of A as ob-
tained from the sets of two scaling-field equations (E2)
and four scaling-field equations (E4).
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and v=0.60, respectively. Second, over the in-
terval 107 <A <10* the exponent v varies by 11%
for the first truncation (E2), but only by 1.7% for
the second truncation (£4). (Exponents calculat-
ed from the untruncated equations should not de-
pend on A at all.) Third, for both truncations
the critical exponent v becomes constant for A
z102,

The determination of the critical exponent 7 is
shown in Fig. 2. The truncated scaling-field
equations exhibit critical fixed-point solutions
for a range of values of the parameter A, Fig-
ure 2 shows for the truncation £4 the fixed-point
coordinate U,,* as a function of A for six values
of A, We determine the fixed-point value A* by
requiring that the non-Gaussian critical fixed
point have the same normalization as the Gaus-
sian fixed point of Eq. (6). That implies p,,*(A*)
=0, which determines. the critical exponent 7
through Eq. (3). As A becomes large, the values
for the exponent 1 converge towards 77~ 0,062 and
become increasingly independent of the choice of
the fixed-point condition for u,,*. For small A
the value of n varies considerably as a function
of A, and the fixed-point condition has no solu-
tion for A< 1072, For the truncation E2 no con-
dition for A* exists, and we choose A*=0 consis-
tent with the Gaussian fixed-point value. The ex-
ponents v plotted in Fig, 1 are those for the fixed
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FIG. 2. Fixed-point coordinate uyy* as a function of
A for six values of A. The lines of fixed points for A
=10"%, 107!, and 1 terminate as shown.
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points with A =A* and A =0, respectively. The
accuracy of the calculations presented here is to
three significant figures.

The “0dd” scaling-field equations allow an ad-
ditional determination of 1 via the critical index
Yo°=3@ +2-n). The truncations 02 and 03, when
linearized about the critical fixed point of the
“even” equations E2 and E4, respectively, re-
produce exactly all input values of A. Thus the
pairs of equations [E2,02] and [E4, 03] constitute
consistent truncations. The correction-to-scal-
ing exponent A, is given by v times the critical
index” y,,°; in approximation F4 it assumes, for
large A, the value A, = ~0.47.

According to the theory?®!® the critical expo-
nents v and ) should be independent of the nor-
malization parameter A, and the critical fixed-
point solution should exist for only one value of
A, The result of an €-expansion calculation of
7 to order €2 from Eq. (1) agrees with both ex-
pectations.'®* Presumably the untruncated scal-
ing-field expansion (if it converges) will also
show this behavior. For the truncations studied
in this paper we see that the ideal behavior is
approached as A becomes large. For that rea-
son we quote the values of the critical exponents
as they are obtained for large A. The a priori
significance of large A is not yet well understood.
We expect that as the truncation is further re-
moved the ideal “large-A” behavior will be ap-
proached for smaller values of A, with the re-
sults becoming universal in the untruncated limit.
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Charge-Separation Electric Fields in Laser Plasmas*

C. W. Mendel, Jr., and J. N. Olsen
Sandia Labovatovies, Albuquerque, New Mexico 87115
(Received 15 January 1975)

Space-charge—separation electric fields have been measured in the expansion of laser
plasmas generated by 40-psec, 1.06-um laser pulses, The measurements were made
at 2.5 and 5.0 mm from the carbon targets and on nanosecond time scales. Measured
electric fields were as high as 1900 V/cm and exceed those expected from theory.

A major problem in laser plasmas has been
that of making local, time-dependent measure-
ments close to the target without disturbing the
plasma. In the past, charged-particle probes
have been used to measure plasma fields on long
time scales.'”® Kalmykov, Timofeev, and Shev-
chuk®* have used an ion beam to detect fields on a

10-nsec time scale. However, their scheme de-
tected fields only when they reached predeter-

mined values, thus calling for repeatable exper-
iments for complete (in time) data. This Letter
describes the first local measurement of space-
charge—separation electric fields near a laser

target (2.5 to 5 mm away), on a nanosecond time

859



