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dicates the proven value of the quark model in
resonance classification. The generally dichoto-
mous situation here is of course essentially that
envisaged for quarks by Gell-Mann, ' that one
may approach the problem either in a purely dy-
namical bootstrap model or in a model based on
fundamental entities.

Finally, since the quark model is equally as
successful in baryon classification as in meson
classification, one may hope that eventually dual-
reson:mce models for baryons will reach the
stage where one can as strongly demonstrate the
coincidence of dual- and quark-model predictions
for baryonic spectra, as one has in the present
paper for the mesonic case.
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It is worth remarking that M. Gell-Mann (private
communication} suggests that one should consider the
internal and external states of the dual-resonance mod-
el as mass-degenerate SU(3) nonets. We differ from
Gell-Mann's philosophy in expecting that SU(3) mass
breaking and physical intercepts n&(0) = 2, o.„(0}= 0
and c'~e(89p)(0}=4, uE(0) =- ~ should be already in the
Born amplitude. For this reason, in the present dual-
model analysis we consider directly only the nonstrange
isospin multiplets contained within the SU(8) classifica-
tion.
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The equations characterizing the orthogonal gauge do not restrict the spatial degrees of
freedom. This observation leads to Poincard invariance in s+ 1 dimensional space for
any s. The absence of a tachyonic ground state and of ghosts is derived from algebraic
consistency.

The literature on the quantum dynamics of the
relativistic string has until now been beset by
the difficulty that it permitted Poincard invariant
solutions only in a critical number of space-time
dimensions larger than four. ' The source of this
difficulty has been the dependence of some of the
generators of the Lorentz group on the operators
L„ofthe Virasoro algebra. This dependence, in
turn, resulted from the elimination of one of the
spacelike degrees of freedom by means of the
orthogonal gauge conditions. The null plane co-
ordinates were used for this purpose. It is there-
fore suspect. '

The quantum dynamics of the string will be
formulated here in a Poincard invariant but not
manifestly covariant way. This permits a sep-
aration of the internal dynamics from the trivial
uniform motion of the free string as a whole.

Algebraic restrictions are imposed on the Poin-
car6 generators by the desire to have an algebra
of operators which includes the Poincare genera-
tors P" and M"' as well as a canonical (center-
of-mass) position operator of the string at v=0,
X". This algebra is supposed to contain the Poin-
care algebra. as a subalgebra, as well as the ca-
nonical algebra of X" and I'". Because of the
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dependence of M"" on X", it is well known' that X" cannot be a four-vector because X is a Casimir
operator of this algebra. Thus, the canonical algebra is necessarily noncovariant, viz.

[X~,X']=0, [P",P']=0, [X",P "]=ig""—i(P" /P )g".
It takes account of P' as the generator of time translations, t =X'.

The equations of motion and boundary conditions of the string are satisfied by the solution

x&(o, r) =%'+ + g -" cos&„exp(-i7„).i n„~
l rr „pn (2)

The string is assumed to have length l, o„=nwo/l, 7„=nrem/l, and n „"=(n„")t.The quantities n, " are
not defined and occur nowhere. From this one obtains x'-=&x/&o' and x=ex/87=p. Capital letters will
indicate the integrated quantities:

X~ = f x~do, P~ = f, -p~ do;

the bar indicates the average: X—=X/l, P =P/l. —

The canonical equal-time commutation relations for the space components of the fields (A, , l = 1, 2,
. . ., s in s+1 dimensional space-time)

[x'(o, r), x'(o', T)] =0, [pk((r, v) p'(cr', r)]=0, [xk(o, )), p'(o', ~)] = i5"5 ((r -o')

can be satisfied provided the internal modes are independent of the center-of-mass kinematics,

[n„',X"]=0, [n„",P'] =0,
and satisfy the standard commutation relations with one another,

[n ', n„']=me"6„,„,.

The Lorentz generators now become

Mp f'd, .(, („~p ];b pu)) ,y.u p.];(X',p~)+-.'iZn '.(n.",n ."]'.

They do not depend on the Virasoro operators

pwmw n
&m'O'n-m )

but they do require the knowledge of the com-
mutation relations of the n„'with the other oper-
ators.

Now physically the n„'in (7) describe a spin
angular momentum of the string as a whole,

S'k=- i g n ' n„"n „',u ~ l .
nap

If the a„were independent of P this would mean
that the string at rest is endowed with internal
structure which involves not only the axial vector
S (S"=—2e"' Sl™),but also a polar vector S' with
components

Sitk —~g~-1(n 0 n kj
nwp

If the string were charged this would mean a
static electric dipole moment in addition to a
magnetic moment associated with S. Thus the

must depend on the P in such a way that S'

J=Xx p+S

N=X'P--2(X, P'j+(Sx P)j(P'+M) (12)

with the expression (7) where J "=2~e ' M' and
~pk ~k

The Poincarb generators consist of the Lorentz
generators, (11) and (12), and the four-vector P"
=—((P'+M )'", P). The commutators of all ten of
these are known from the above equations once
the commutators involving the operator M are
known. To determine the operator M we must
use the orthogonal gauge conditions. The orthog-
onal gauge is characterized by the two equations

p x'+x' p =0,
p2+x'2=0.

(13)

(14)

vanishes in the rest system. Qne finds

n '=n P(P'+M)-' n &0

The derivation of this result involves a compari-
son of the canonical representation of the Lorentz
generators



VOLUME 34, NUMBER 13 PHYSICAL REVIEW LETTERS 31 MARcH 1/75

Equation (13) is satisfied provided (classically)

G„=-A„+(1/2&v)(o.„p+p o.„)= 0, n w 0, (15)

while Eq. (14) requires also

M =—-PpP" = 2wAo. (16)

At this point the following important observa-
tions must be made.

(a) The string model is crucially dependent on
the mathematical implementation of a relativis-
tic position operator, as is evident from the al-
gebra, as well as from (2). If X' is the Newton-
Wigner position operator for the localizability of
the center of mass, it singles out a preferred co-
ordinate system: A relativistic system can be
localized at any one time only relative to one
I.orentz frame. It is most reasonable to assume
this frame to be the frame in which the system
as a whole is at rest, the center-of-mass frame.

(b) As is evident from (1) the canonical repre-
sentation of the Poineare algebra yields an X&

which is not a four-vector. Neither are nt',
x~(a, v), orp&(o, v). But P"' and M"' are covar-
jant by construction [using (10)]. The gauge con-
ditions (13) and (14) are therefore not Lorentz
form invariant. Moreover, one can verify ex-
plicitly that the G„of(15) do not commute with
the boost operator ¹ If the gauge operators 6„
vanish in one frame, then U(A)G„U '(A) will also
vanish, i.e. , they will vanish in all frames. This
is the classical case. The quantum case, how-
ever, permits only G„l) =0, i.e. , a gauge con-
straint on the states. In that case G„l) =0 does

not imply UG„U 'l ) =0, unless G„commutes with
U. Therefore, in quantum dynamics these con-
straints hold in the form G„l), = 0, where l ),
is a center-of-mass state. With respect to any
other Lorentz frame l)A=—U(A)l), the corre-
sponding constraint operator will be G„—=U(A)
&&G„U '(A) so that G„ l )A =U(A)G„l), = 0 also.
It then follows that the n„'p terms of (15) never
contribute to the constraints.

(c) The condition (13) leads to a normal or-
dered operator, but (14) does. not. In fact, the
vacuum expectation value of A„(8),is infinite.
The quantum mechanical interpretation of (14)
can therefore be made only within an undeter-
mined additive multiple of the identity.

With this is mind (15) and (16) become

and

L„=O, n40,

M = 2@La+ma,

(15')

(16')

where

L =—
n =2 ~:&m' &n-m: ~

0&men

While (16') thus provides us with the mass oper-
ator, (15') cannot be satisfied as an operator re
lation as mentioned above. It can hold only as a
condition on the state vectors,

L.lq') =0, n&0.

These vectors are necessarily the e.m. system
descr iption. The corresponding matrix elements
are

x, "= t+(M) , , Q —(n—„)coso„exp(-iv'„)l'vw „n
g (n„)cosa'„exp(-iv'„)(M) v"~

l

(18)

The string can now be completely solved in the
c.m. system. The constant can always be chosen
so as to avoid a tachyonic ground state or any
zero-mass excite.d state. ' The condition (17) re-
stricts the total Pock space to a physical sub-
space 4 on which the Poincare algebra in 3+1
dimensions (or s+ I dimensions) is consistently
realized. This follows from the fact that on 4,
L„commutes with S, P, X, and I„(n~ 0). The
multiplets in 4 can be constructed explicitly from
the Pock representations of the spherical har-
monics Y, ~ confirming the SO(3) invariance.
For o. with s components (9) describes the (in-
teger) spin operator in that dimensionality and

One verifies the consistency which requires

[a ', L„]=mn (21)

analogous statements hold.
Finally, one can define a Hamiltonian operator

which yields the desired equations of motion for
the x(o, v) and p(o, r),

H = f, do 2 (p~+ x-")= (1/2l)(P'+ 2nL, ) .
Thus, mL, /l is the Hamiltonian for internal mo-
tion. Because of (16')

H = (1/2l)P, '.



VOLUME 34, NUMBER 13 PHYSICAL REVIEW LETTERS 31 MARCH 1975
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Carbon monoxide rebinding to myoglobin after photodissociation is nonexponential below
150 K; we explain it as being due to an activation-energy spectrum. Fang has criticized
our analysis as being ambiguous; we show here that his arguments do not invalidate our
conclusion.

We have recently presented evidence for an
activation-energy spectrum in the rebinding of
carbon monoxide to myoglobin after a photoflash. '
Fang' has criticized our treatment, claiming that
(1) two discrete activation energies can explain
our data and (2) the spectrum can have resulted
from an implicit assumption in our analysis. In
the present comment we answer Fang's criticism.

We fit our rebinding data by a function II(t)
= (1+ t/t, ) ", where t, and n are temperature-de-
pendent parameters. We interpret this nonex-
ponential behavior by assuming the existence of
an energy spectrum g(E) so that

H(t) = JdE g(E) exp(- ~t),

where the rate X depends on temperature T and
activation energy E through the Arrhenius rela-
tion, X(T)=Aexp(-E/kT). Now to the criticism.

(1) Fang interprets our fit, Eq. (1), by intro-
ducing Arrhenius relations for to and n, thus us-
ing only two activation energies instead of a spec-
trum. The Arrhenius relation, however, has a
physical meaning only for rates; applying it to
the dimensionless parameter n without justifica-
tion is meaningless.

(2) Fang remarks that Eq. (1) implies a first-
order reaction, but that H(t) can also be explained
by assuming a higher order and a different spec-
tral function g'(E). This remark is correct, but
the assumption of a first-order reaction is justi-
fied by the fact that one myoglobin molecule binds
one carbon monoxide molecule and by our obser-
vation that the reaction rate is independent of
ligand-molecule concentration.

It is certainly not excluded that an alternate ex-
planation for the nonexponential rebinding can be
found, but we feel that Fang does not propose a
viable substitute for our activation-energy spec-
trum.
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