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Hartree-Fock calculations using the exact-exchange operator are reported for molecu-
lar and metallic solid hydrogen. Both calculations used the same basis set and the same
crystal formalism. The calculations indicate a transition to the metallic phase at a pres-
sure of 2,1 Mbar, in agreement with recent experiments.

In recent years there has been a widespread in-
terest in the possibility of producing metallic hy-
drogen in the laboratory' by means of a pressure-
induced transition from the molecular phase. To
determine the feasibility of such a process, it is
important to have some estimate as to the pres-
sure needed. Previous calculations®™® have pro-
duced estimates ranging from 0.25 to 20 Mbar,
the lower pressure being relatively easy to reach
in the laboratory, and the higher pressure out of
reach at least statically.® Recent experimenters’®
achieving high pressures dynamically suggest
that they may have detected the transition at pres-
sures of 2.0 to 2.8 Mbar. In this Letter we pre-
sent preliminary results which are obtained from
calculations more rigorous than those previously
performed, and which support the experimental
evidence of a possible transition.

Theoretical estimates of the pressure required
for the transition at zero temperature are ob-
tained from the common tangent to the energy-
volume curves for the two solid phases. Most of
the previous estimates have been based on fairly
similar equations of state for the metallic phase,
but have used widely different and less reliable
equations of state for the molecular phase. In
fact, the metallic-phase equation of state recently
obtained by Neece, Rogers, and Hoover? from the
self-consistent calculation, using the Kohn-Sham
local potential to approximate exchange and cor-
relation effects, is not substantially different
from the approximate cellular calculation by Wig-
ner and Huntington® in 1935. The molecular-
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phase equation of state has been obtained by solv-
ing the Bethe-Goldstone equations using an ap-
proximate analytically fitted curve for the H,-H,
interaction potential.® Forms such as the Len-
nard-Jones 6-12 or 6-8 potentials were used,
with parameters obtained either from experimen-
tal virial coefficients and viscosities for molecu-
lar hydrogen, or from variational calculations of
the interaction of two H, molecules.’ The mo-
lecular-phase equation of state varies sharply
with the choice of parameters, with the result
that estimates of the transition pressure based
on slightly different H,-H, pair potentials vary
from 0.84 to 4.2 Mbar.'® A main difficulty with
all the previous work is that the metallic and
molecular crystals are not treated in an internal -
ly consistent degree of approximation.

The calculations presented here are based on
the techniques developed by Harris and Monk-
horst' for the computation of Hartree-Fock wave
functions and energies. In their method each val-
ence Bloch orbital [K) is expanded according to

IK)=33 nCnl®) R, (1
where the |K, ) are basis Bloch functions with
Bloch wave vector K:

d
|K,)=exp(ik-F)); 3¢, (F-R,=8). (2)

uon=1
The sum over p in Eq. (2) runs over all the lat-
tice cells, R, is the origin of cell y, and §, is
the position relative to the cell origin of atom #.
The ¢,, are Slater-type atomic orbitals, and the
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coefficients C (K) are determined, as functions
of K, by solution of the Hartree-Fock equations.

A key feature of the method of Harris and Monk-
horst is the reduction of all the crystal integrals
arising in the Hartree-Fock formalism to lattice
sums. This reduction is accomplished by intro-
ducing Fourier representations for the integrals,
and using convolution theorems and lattice-or-
thogonality relations. It then becomes possible
to treat exchange exactly, and to avoid many of
the problems encountered in approaches based on
finite clusters of atoms. The method has been
applied to cubic metallic hydrogen’ and to lithium
crystals.!3

Calculations based on the above-described
method were carried out for metallic hydrogen
in a bece lattice and for molecular hydrogen in a
simple cubic lattice with one H, molecule per
unit cell. The molecular-hydrogen crystal was
constructed by placing one atomic nucleus at the
origin of each unit cell, with the other in the
principal diagonal at the position yielding a mini-
mum Hartree-Fock energy. In this way the H-H
distance in the molecular phase was optimized at
each density. Both the metallic and molecular
phases are treated by the same formalism and
with the same orbital basis set, leading to Har-
tree-Fock results which should be of comparable
quality.

It should be noted that at experimentally attain-
able pressures the structure of the molecular-
hydrogen crystal is not simple cubic. Moreover,
some calculations have indicated that the most
stable structure for the metallic phase is not
bee.*'1® However, it has been argued that these
structure effects are not significant,® and we be-
lieve that they involve amounts of energy which
are small relative to those of primary impor-
tance in the transition. Another potential limita-
tion of our calculation is that it does not include
the correlation energy. Calculations on hydro-
gen'? indicate that the correlation energy is rela-
tively insensitive to structure and denstiy, and
so its omission for both phases should not have
major effects. Finally, we note that our calcula-
tions apply at zero temperature. The effect of
finite temperature on the transition pressure has
been estimated to be small.?

In carrying out the calculations to be reported
here, we found it necessary to use a different
basis set than that used by Kumar, Harris, and
Monkhorst!? in their work on the metallic-hydro-
gen lattice. Their basis was restricted to 1K)
with K values in the first Brillouin zone, and is

unsuitable for the molecular crystal when it
should have a Fermi surface greatly distorted
from a spherical shape. Therefore, rather than
using several different Slater-type orbitals ¢,
we used a single ¢ but K values in several zones.
Functions of this type can be written as

|K)=3] C(K+K)
®

a
X expli(K+K)-T]5 D) o(F - R,-8), (3
U m=l

with K restricted to the first Brillouin zone and
Ka reciprocal-lattice vector. The contribution
to IK) from K=0 corresponds to a function of the
type used in the earlier work, while nonzero K
allow for the p-type character necessary near the
Brillouin-zone boundaries. The function ¢, which
we took as a Slater-type 1s orbital, is needed to
account properly for the cusp in the wave function
at each nucleus.

The basis used in this work then can be regard-
ed as intermediate between a conventional plane-
wave expansion

|12>=}:,T<C(I€+f{')exp[i(l_{+§)-ﬂ’ (4)
K

and the regular tight-binding expansion
d
[K)=77 exp(ik-R ) ) o(F - R, - 8)). (5)
I n=1

The importance of the cusp and hence the slow
convergence of the plane-wave expansion has
been recently illustrated for metallic hydrogen.®
Our expansion also has some computational ad-
vantages over the tight-binding expansion.!! De-
tails of the computational techniques will be re-
ported in a forthcoming paper. Our techniques
closely parallel those employed by Oddershede,

TABLE I. Total Hartree-Fock energies per atom E/
Nd (in hartree), percent occupancy in the second Bril-
louin zone 0,, and molecular-hydrogen bond lengths
for simple-cubic molecular- and bec atomic-hydrogen
crystals at compound lattice spacing e (in bohr).

Molecular Atomic
a E/Nd H-H 0y E/Nd 0,

2.4 -0.400 15.1
2.6 -=0.430 15.1
3.0 —0.463 15.2
3.15 -0.478 1.610 8.10

3.2 -0.486 1.580 5.86

3.4 —0.505 1.458 4,93

3.464 —-0.475 15.3
3.8 —-0.516 1.448 1.47 —0.470 15.5
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FIG. 1. Total Hartree-Fock energies per atom E/
Nd (in hartree) for molecular- and atomic~hydrogen
crystals versus volume per atom ¢%/2 (in cubic bohr).

Kumar, and Monkhorst'® for the plane-wave ex-
pansion,

Table I summarizes our results at several lat-
tice spacings using seven K values (the 000 and
100 stars) and a single 1s Slater-type orbital. At
each density the Slater exponent was optimized.
These results are plotted in Fig. 1, which also
shows the construction of the common tangent.
‘The molecular curve does not continue beyond its
junction with the metallic curve because the
optimization of the H-H bond distance then makes
the two curves identical.

In Table I are also presented data showing the
percent occupancy (0,) of the second Brillouin
zone for the molecular-crystal wave function.
These data indicate that prior to reaching the
transition pressure the nature of the molecular
crystal changes continuously from a typical in-
sulator toward a more conducting phase, concur-
rently with a corresponding change in the intra-
molecular H-H distance.

We obtain a pressure of 2.1 Mbar for the transi-
tion. During the transition the density changes
from 0.65 to 1.07 g/cm3. This can be compared
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with the densities 1.08 to 1.30 g/cm® reported by
Grigor’ev et al.” Our results are consistent with
the experimenters’ interpretation that they ob-
served a transition. Further calculations using
19 K values (including the 110 star) should de-
crease O, and may slightly increase our estimate
of the pressure at the transition.
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