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corresponds very closely to what is found in
Na„WO„even the 2-eV separation corresponds
well to the shift expected for removal of one elec-
tron.

A detailed discussion of (1) the relationship be-
tween the electronic structure of the bronzes and
XPS valence-band data, (2) the connection be-
tween XPS binding energies of % and Na core lev-
els and spin-relaxation" and Knight-shift" exper-
iments, and (3) the implications of the detection
of a unique W 4f doublet on conduction-electron
delocalization will be published elsewhere. A
more extensive investigation of the dependence
of e on x and on the local environment is in pro-
gress.

*Present address: Central Research Department,
Dupont Chemicals, Wilmington, Del. 19898.
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The tetracyano-P-quinodimethane salts of tetrathiafulvalene and its newly synthesized
s elenium analogs tetraselenafulvalene and cis /trans-diselenadithiafulvalene form an
"isostructural" series of highly conducting organic salts. The electrical conductivity is
remarkably similar and peaks at 59, 40, and 64 K, respectively. It is concluded that
the conduction mechanism is of the same origin in spite of their varying molecular prop-
erties.

Considerable interest has been generated re-
cently by the dc-conductivity properties of the
crystalline organic charge-transfer salt tetra-
thiafulvalene tetracyanoquinodimethane (TTF-
TCNQ). ' ' In order to understand this material

better we have synthesized the selenium ana-
log of TTF, tetraselenafulvalene (TSeF)' [Fig.
l(a)), and cis/trans-diselenadithiafulvalene
(DSeDTF)' [Figs. 1(b) and l(c)]. In this paper we
report conductivity measurements on the TCNQ
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FIG. 1. The molecular structure of the constituents.

TABLE I. Unit-cell constants and conductivity results.

Parameter
TTF-

TCNQ
DSeDTF-

TCNQ
TSeF-
TCNQ

salts of these molecules. The new materials de-
scribed here offer an approach for understanding
TTF- TCNQ by changing the molecular properties
while maintaining the crystal structure.

Prior attempts at varying the physical proper-
ties of TTF- TCNQ by the addition of substituents
on either TTF or TCNQ have resulted in a change
in crystal structure" which obscures the elec-
tronic effect of the molecular modification. The
x-ray diffraction patterns and unit-cell constants,
which are listed in Table I for the TCNQ salts
of TTF, DSeDTF, and TSeF, show these three
materials to be isostructural. These parameters
were determined by completely indexing the pow-
der x-ray diffraction patterns consistent with the
space group reported for TTF-TCNQ. " TSeF-
TCNQ possesses a slightly larger unit cell than
its sulfur analog, while the mixed sulfur-seleni-
um derivative lies almost exactly in the middle
of these values. Considering that the Van der
Waals radius of selenium is 0.15 A larger than
that for sulfur, we find only a very small in-
crease along the b, stacking axis in TSeF-TCNQ
(0.05 A) and DSeDTF-TCNQ (0.02 A).

DSeDTF- TCNQ differs fundamentally from
TTF-TCNQ and TSeF-TCNQ, since the less-
symmetric DSeDTF molecule is capable of in-
troducing disorder into the TCNQ salt. Proton
NMR reveals the presence of approximately equal
amounts of cis and trans isomers [Figs. 1(b) and
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g(c)] in neutral DSeDTF.' The cis isomer has a
permanent electric dipole moment, while the
trans isomer has a quadrupole moment.

Single-crystal, four-contact, dc-conductivity
measurements on the three isostructural sys-
tems have been carried out as a function of tem-
perature. To ensure current homogeneity, the
current contacts were capped at the ends of the
crystal and the voltage contacts were wrapped
around the sample. '

The most important experimental observation
of this work is that the temperature dependence
of the electrical conductivities of the three sys-
tems show remarkably similar behavior (Fig. 2).
In spite of the significant changes in the molecu-
lar properties of the donor, both the crystal
structure and the sharply peaked temperature
dependence of the conductivity remain similar.

Within the context of the overall similarity be-
tween the three members of this isostructural
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FIG. 2. Normalized conductivity o/0(295'K) of (~ )
TTF-TCNQ, (+) TSeF-TCNQ, and (&) DSeDTF-TCNQ.
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family it is interesting to examine the differ-
ences which do exist." In transmission, thin
crystals of TSeF- TCNQ and DSeDTF- TCNQ have
a magenta red and a deep orange color, respec-
tively, as opposed to the yellow color of TTF-
TCNQ. The metallic state in TSeF- TCNQ is sta-
bilized to -40'K, the lowest temperature report-
ed to data for any organic sobd (compared to
-59'K for TTF-TCNQ, Table I and Fig. 2). The
potentially disordered system, DSeDTF- TCNQ,
has its peak conductivity at -64'K which is higher
than T~ in either TTF-TCNQ or TSeF-TCNQ, or
their average, 50'K. This is also contrary to the
suggestion that disorder might stabilize the me-
tallic state to lower temperatures. '

In order to compare the resistivity in the tem-
perature range above T~ we have chosen to fit
the data by two dominant terms of the simple
power-series expansion p =p, +p, 1'. We find that
all samples are fitted reasonably weD (Fig. 3)
over the limited temperature range T~& T ~250'K,
as found previously for TTF- TCNQ."" By us-
ing thin and narrow samples we have found good
reproducibility in p, for each compound, con-
trary to the previous finding. This strongly in-
dicates that p, measures an intrinsic property of
the system. Having made this two-parameter fit
we can use p, to compare TTF-TCNQ measured
in different laboratories and the different mem-
bers of the isostructural family reported here.

First, considering TTF- TCNQ, we have fitted
the data from a number of different laboratories
by p = pa+ p, T and find (in units of 10 ' 0 cm/'K')
p, = 2.7, ' 1.8,' 2.5,' 2.9.' and 2.2 (Table I)." These
values provide a measure of the consistency with
which TTF- TCNQ can be prepared and measured.

Second, the values of p, for the three isostruc-
tural compounds are nearly the same (Table I).
Neither the replacement of TTF with TSeF which
differs in mass, ionization potential, polarizabil-
ity, etc., nor the disorder introduced by DSeDTF
significantly changes the nearly quadratic depen-
dence of resistivity on temperature or its abso-
lute value. This similarity indicates a common
origin for the conduction in all three systems.

It is of course interesting to compare the nor-
mal samples reported here and by most workers
(conductivity peaks s 20 times room-temperature
values) with the University of Pennsylvania "su-
per" TTF-TCNQ samples (conductivity peaks of
40, 50, and 150 times room-temperature values). '
The super samples differ from the normal ones
only in the transition region. At higher tempera-
tures the super samples also follow p, +p, Z, with
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FIG. 3. The absolute resistivity of (0) TTF-TCNQ,
data taken from Ref. 5, (o) TTF-TCNQ measured by
authors, (+) TSEF-TCNQ, and (x) DSeDTF-TCNQ.

p, =2.9, just as for normal samples (Fig. 3).
However, just above the transition, the resistiv-
ity drops significantly below the 7 curve, giving
rise to the giant conductivity peak. We conclude
that whatever the mechanism giving rise to the
apparent giant conductivity it is dominant only in
a transition region near the conductivity-peak
temperature; that is, the giant peak is not an out-
growth of the high-temperature T' behavior ob-
served in all samples. Similar, although much
weaker, deviations from the T' behavior in the
transition region have been observed in some of
our samples.

Many authors have proposed possible theories
for the conductivity behavior of TTF-TCNQ or
for ideal one-dimensional systems. At present it
is not clear if any actually apply to TTF- TCNQ. "
At the risk of increasing the possible theories,
we would like to consider electron-electron scat-
tering as a possible resistivity mechanism in
these systems. " It is well known that in transi-
tion metals where there are narrow d bands de-
generate with broad s bands, e-e scattering con-
tributes a T' term to the resistivity at low tem-
peratures. An even more favorable situation
may be present in TTF- TCNQ where narrow
tight-binding bands prevail, and the bandwidths
of TCNQ and TTF chains are not necessarily the
same. Because of the small Fermi energy, EF
-0.2 eV, '7 and inefficient screening in pseudo-
one-dimensional systems, Thomas- Fermi
screening length of -7 A,"e-e scattering be-
tween the two bands may give a large contribu-
tion to the resistivity. In the free-electron ap-
proximation the mean free path for e-e scatter-
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ing, L, „is"

where n is electron density and k~ is the Boltz-
mann constant. The expected value for TTF-
TCNQ is L, ,- 2&&10 '/T' cm compared to the
experimental value L, , -1&&10 '/T' cm derived
by using p, of Table I. This reasonable agree-
ment is encouraging, considering the simplicity
of the free-electron approximation" as compared
with the complexities of these organic systems.

In conclusion, we have studied a new isostruc-
tural family of organic metals which display wide-
ly varying molecular properties, and found re-
markably similar single-crystal dc-conductivity
behavior. It is apparent that in these systems
the dc conductivity is governed by a common
process, possibly electron-electron scattering.
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In real one-dimensional systems where the inter-
chain transfer integral I" satisfies I" «7', 8-e scatter-
ing results in p -T. These fulvalene systems, where
t' ~ T prevails, should be considered as highly aniso-'.
tropic three-dimensional systems.


