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The wave number of an electron plasma wave propagating on a collisionless plasma
column is found to differ from that of a small-amplitude wave at the same frequency.
The nonlinear wave-number shift oscillates in space. The magnitude of its first maxi-
mum, when normalized to the initial (nonlinear) damping coefficient, is found to be pro-
portional to the square root of the initial wave amplitude.

Recent theories! " predict that the wave num-
ber, k,=21/\, of a large-amplitude electron plas-
ma wave is not the same as the wave number of
a small-amplitude wave at the same frequency.
We have measured* the nonlinear wave-number
shift using a phase-tracking interferometer. The
spatial dependence, magnitude, and scaling with
frequency and amplitude are determined.

If the initial wave amplitude, ® (electric poten-
tial), is small enough, the linear theory of Lan-
dau® applies and is well verified by experiment®”;
in a homogeneous plasma a wave of constant fre-
quency has a complex wave number % =k, +ik,,
which is independent of position and ®. It is also
well established® in theory and experiment that
k, becomes a function of position and ¢ when the
wave amplitude is large enough to trap the reso-
nant electrons. Conservation of energy between
the wave and the trapped electrons leads to non-
linear amplitude oscillations. The trapped elec-
trons also cause k, to depend on position and .
Conservation of energy in a reference frame
moving with the linear-wave phase velocity, v,,
leads to nonlinear oscillations in %#,. In this
frame, the amplitude oscillations are related to
conservation of momentum.

Morales and O’Neil' considered the initial-val-
ue problem. A wave of fixed wavelength is turned
on at £ =0 and propagates in an infinite, homoge-
neous, one-dimensional, collisionless plasma.
The time-dependent shift in the complex frequen-
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cy caused by the trapped electrons is calculated.
They assume that the wave amplitude is constant
(negligible linear damping) and small enough for
the resonant electrons to be represented by a
second-order Taylor expansion of the electron
velocity distribution function, f,@), about v,.
They also give the transformation to the bound-
ary-value problem studied in our experiment.

In this case a wave of fixed frequency w, deter-
mined by a single generator, propagates away
from a transmitter probe at z =0. The time-de-
pendent frequency shift becomes a space-depen-
dent shift in the complex wave number. The
imaginary part of the shift gives the amplitude
oscillations. The real part is

Ok, (2) = = @o/v,)g (ks 2), )

where Q, = (€2/m)*(w,/k,)* (0% ,/0v7),,/ (0€/0w),, 4,
€ is the plasma dielectric function, %, is the lin-
ear wave number, w is the (constant) oscillation
frequency, v, is the linear group velocity, w, is
the plasma frequency, and —e andm are the
charge and mass of the electron. The function
g(kg2) (Fig. 2 of Ref. 1) gives the space depen-
dence in terms of the scaled position 25z, where
kg =wp/v, and wg = (ek,*® /m)*’? is the bounce fre-
quency of the trapped electrons. If f,(v) is Max-
wellian, ©,>0. Since g(k;32) <0, Eq. (1) gives
6k, >0, Examination of g(kgz) shows that 6k, is
initially zero; it increases and executes damped
oscillations about an asymptotic value, The os-
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cillation rate is twice that of the nonlinear am-
plitude oscillations. The position, L, of the first
maximum of 8%, (given by k5L = const) is near the
position of the first amplitude minimum.

Equation (1) is not well suited for comparison
with experiment. The major frequency depen-
dence appears through (a"‘fo/avz)vp which is diffi-
cult to measure accurately. Using the spatial
Landau damping coefficient,” k; = - (1 /v,) (w,/%,)?
X (afo/av),,p/(ae/aw)w'kr, Eq. (1) can be written in
a more suitable form,

ok, (2) = ®/m)* "%k Rg g 2)/T, 2)

where R = (%,/0v%),,/ (8fo/9v),,. The major fre-
quency dependence now appears through 2; which
can be accurately measured. If f,(v) is nearly
Maxwellian, the frequency dependence of R is
slow compared to the exponential dependence of
ky onv,?,

The assumptions of the theory are not com-
pletely satisfied in our experiment. At small am-
plitudes the waves studied have finite linear
damping, i.e., the assumption of negligible lin-
ear damping is not satisfied. At larger ampli-
tudes the measured initial nonlinear damping co-
efficient, #;(®), increases with wave amplitude'®;
& is then too large for the second-order Taylor
expansion of f,@) to be valid. In addition, the
wave amplitude and electron density depend on
radius in the cylindrical geometry of the experi-
ment. We have estimated this correction and
find that the scaling of Eq. (2) is not changed.
The spatial dependence is modified; however,
the qualitative behavior noted above remains the
same. Surprisingly, only a slight modification
of Eq. (2) is necessary to describe our data.

Other theoretical work finds an increase in the
magnitude of 6k, above that given by Eq. (2).

Lee and Pocobelli® include small linear damping
and find an increase of up to 50%. Tsai,® by sim-
ulating the resonant electrons, is able to include
linear damping, %,(®), and the complex wave-
number shift. He finds an increase of up to a fac-
tor of 2, Comparison with experiment is difficult
because an analytic expression for the scaling of
6k, is not available.

The experimental apparatus, described in de-
tail elsewhere ! produces a collisionless hydro-
gen plasma column surrounded by a conducting
cylinder (5.2 ¢m radius) and immersed in a uni-
form axial magnetic field (200 G). Probes can be
inserted into the plasma and moved radially and
axially. The plasma temperature (T =8.2 eV) and
central density (3.0x10% cm™®) are known (to 5%)

from the measured dispersion of linear waves.®
The measured Landau damping of linear waves
shows thatf,(v) is Maxwellian in the range of the
wave phase velocities. The damping coefficients,
k; and k;(®), are obtained (to 10%) from the mea-
sured dependence of wave power on position (pow-
er bandwidth 3 MHz, Aw/w < 3%—this measure-
ment is dominated by the power in the launched
plasma wave at frequency w). For comparison
with the theory, @ is taken to be the initial wave
amplitude at » =0. It is.obtained from the calcu-
lated wave energy density and the power-coupling
coefficient of the transmitter probe measured by
the three-probe coupling technique.*? The uncer-
tainty in the absolute magnitude of V& is 20%.

At a single frequency the relative magnitude of
V& is known to 5%.

The spatial resolution of the conventional inter-
ferometer technique for measuring wavelength is
not adequate for this experiment. We used a
phase-tracking interferometer'® to measure the
wave phase accurately. It is a homodyne inter-
ferometer with a feedback-controlled rf resolver
(phase shifter) in the transmitter circuit. Homo-
dyning is required by the narrow bandwidth of
the resolver. As the receiver probe moves, the
feedback control loop continuously adjusts the re-
solver so that the output of the interferometer is
zero. The phase shift inserted by the resolver is
then equal to the wave phase plus an unknown con-
stant phase due to rf circuit elements. The phase
shift is accurately and continuously measured as
a function of position.

To see the nonlinear part of the phase directly,
the linear phase, k,z, of a wave of constant wave
number is electronically subtracted from the
measured phase. The resulting relative phase,
Af(z), is recorded on an X-Y recorder as a func-
tion of position. The position and Af(z) are also
converted to digital form and stored on magnetic
tape.

To determine 6%,(z) a subtraction procedure is
used to remove the wave-number variations
caused by small inhomogeneities in the plasma
column. A digital computer is used to subtract
A8 (z) of a linear wave from A6(z) of a nonlinear
wave at the same frequency. The result is aver-
aged and differentiated to give 6%,(z) with an ac-
curacy of + 0,01 cm™.

Figure 1 shows some typical raw data. Since
the measured phase contains an unknown constant
phase, the curves have been moved vertically so
that they begin with the same phase near the
transmitter. The small bump at the beginning of
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FIG. 1. The relative phase as a function of position,
The transmitter is at z=0. /27=135 MHz, k,=1.83
em™!, e®/T is (a) 0.0075, (b) 0.067, (c) 0.16, (d) 0.33,
(e) 0.56.

each curve is due to direct coupling between the
transmitter and receiver probes. The small
changes in the slope of Af(z) of a linear wave,
Fig. 1(a), corresponds to axial density changes
of +1%, i.e., the density is axially uniform.
Qualitative agreement with the theory can be
_seen. Near the transmitter the slope of A6 (z) is
independent of ¢ and agrees with that of a linear
wave, i.e., the initial wave number is the linear
wave number. The nonlinear Af(z) peels away
from the linear A9 (z) at a position which moves
toward the transmitter as ® increases. This es-
tablishes the nonlinear origin of the change in
A6 (z); any amplitude-dependent change in the
plasma density would cause Af(z) to deviate from
the linear phase at z =0. Several phase oscilla-
tions can be seen in Fig. 1(e).

The space dependence of 6k,(z), Fig. 2, is in
qualitative agreement with the theory. The oscil-
lation rate is twice that of the amplitude oscilla-
tions. The first maximum of 6%, is located near
the position of the first amplitude minimum. Da-
ta at many frequencies and amplitudes show that
the position of the first maximum of 6k, is pro-
portional to (kg) " « (®) /2 as expected from the
theory.

The first maximum of 8%, is used to determine
the scaling with amplitude and frequency. As ex-
pected from Eq. (2), 6%,/(%;R) is independent of
frequency; however, it increases with amplitude
more rapidly than V® and, at the largest ampli-
tudes used, is about a factor of 3 larger than pre-
dicted by Eq. (2). The additional amplitude de-
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FIG. 2. (a) The wave power and (b) 6%,(z) for the da-
ta of Fig. 1(e).

pendence is removed if 0%, is normalized to the
initial nonlinear damping coefficient, #,(®); 6k,/
k,;(®)R is still independent of frequency and is
roughly proportional to V&, i.e., 6k, <V ®k,(®)R.
Figure 3 shows remarkable agreement between
the measured 6%, and the prediction of Eq. (2)
when k; is replaced by k,(®). This substitution
amounts to multiplying Eq. (2) by a factor S(®)

2 T l T r‘l‘l7rv]
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FIG. 3. The fractional change in %, at the first maxi-
mum of 6k ,(z). K¢(@) =(®/m)'/% (&)R. The wave pa-
rameters are, for 120 MHz, &,=1.45 cm™!; £ ;=0.0079
em™!; for 125 MHz, k,=1.58 cm™!, #,;=0.020 cm™;
for 130 MHz, £,=1.72 em™’, £,=0.32 em™!; for 135
MHz, k,=1.83 cm™, £;=0,044 cm~!; for 140 MHz, &,
=1.95cm™!, £,=0.072 cm™",
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=k,;(®)/k; which our data show to be independent
of frequency. The line is obtained using g(kz2)
evaluated at the first maximum of 6k, [z =1.317,
g(kg2) = — 2.32]. The error bars show the + 0.01-
cm™! uncertainty in 62,. The close agreement
suggests that the increase in magnitude found by
Refs. 2 and 3 may be related to the amplitude de-
pendence of &;(®).

In summary, we have measured the nonlinear
wave-number shift, 6%,, of a large-amplitude
electron plasma wave. The observed spatial os-
cillations of 6%, agree qualitatively with the theo-
ry. The magnitude of the first maximum of 6%,
is proportional to %4;(®), the initial nonlinear
damping coefficient. This is not predicted by the
theory. Even though their assumptions are not
satisfied, the magnitude of the first maximum of
8k, is correctly given by the expression of Mo-
rales and O’Neil [Eq. (2)] provided that the linear
damping coefficient is replaced by 2,(®).
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